

3RD GENERATION MOBILE TECHNOLOGY

Alexandru Cristian Cosariu

(3G)

PURPOSE

• Enhance previous generation system qualities such as:

- Higher data speed
- Enhanced audio and video streaming
- Video-conferencing
- Web and WAP browsing at higher speeds
- IPTV (TV via Internet)

• Typical Devices:

- Standard Cell Phones
- Smartphones
- Internet sticks

System architecture of 3G device

STANDARDIZATION

- 1. International Telecommunications Union (ITU)
 - 1. Creator during the 80s
- 2. International Mobile Telecommunications-2000 (IMT-2000)
 - 1. Specification standards created by ITU for 3G networks
- 3. 3G Partnership Program (3GPP)
 - 1. Collaboration between 6 international telecomm. Associations
 - 2. Given task by ITU with scope to create 3G phone system using 2G network architecture
 - 3. Scope enlarged to develop and maintain:
 - 1. GSM (2G) and its evolutions
 - 2. Evolved 3G
 - 3. Evolved IP Multimedia Subsystems (IMS)

MARKET

- The development of the smartphone (PDA + mobile phone) led to a great demand for mobile internet connectivity, making 3G very popular
- Fourth quarter in 2012 had 1.594B users globally operating on the 3G network
- 256M users in the U.S.
 - With an average plan of \$40/mo, the market produces roughly \$10B/mo
- Phones operating on 3G networks range from \$60 basic cell phones to \$600 iPhone 3G

TECHNICAL SPECS

• UMTS: Universal Mobile Telecommunications System

- UTRA: UMTS Terrestrial Radio Access
- UTRA Frequency Division Duplexing
 - WCDMA based on DS-CDMA Multiple Access Method
 - 5 MHZ carrier spacing
 - 625 uS time slot duration
 - QPSK modulation
 - 4.096 Mchips/s
 - Data rates
 - 128-144 kbps for fast moving devices
 - Up to 384 kbps for slow ones (pedestrian)
 - 2Mbps on WLANs

FREQUENCY BANDS

- IMT-2000 networks shall use the bands 1885-2025 MHz and 2110-2200 MHz
 - (WCDMA) UTRA/FDD is designed to operate in either of the following paired bands
 - 1920 1980 MHz: Uplink (Mobile transmit, base receive)
 - 2110 2170 MHz: Downlink (Base transmit, mobile receive)
 - 1850 1910 MHz: Uplink (Mobile transmit, base receive)
 - 1930 1990 MHz: Downlink (Base transmit, mobile receive)
 - (TD-CDMA) UTRA/TDD is designed to operate in the following bands
 - 1900 1920 MHz: Uplink and downlink transmission
 - ${\rm \circ}~2010-2025$ MHz: Uplink and downlink transmission
 - ${\circ}\ 1850-1910$ MHz: Uplink and downlink transmission
 - 1930 1990 MHz: Uplink and downlink transmission
 - 1910 1930 MHz: Uplink and downlink transmission

CODING

- WCDMA spreading factor of short codes from 4 to 256
- TD-CDMA uses spreading factors of 1, 2, 4, 8, and 16
- Channel coding and interleaving techniques:
 - Block Codes
 - Convolutional Codes
 - Reed Solomon Codes
 - Turbo Codes
 - Combination of Codes

SECURITY

- KASUMI encryption
 - 128 bit algorithm
- Experts at Weizmann Institute of Science (Israel) cracked the system in less than 2 hours
- IMT-2000 under criticism for switching to KASUMI from a stronger algorithm called MISTY

TYPICAL LINK BUDGET

UMTS UL Link budget example, (c) UMTSWorld.com	
ТХ	
Mobile max power = 0.125W (dBm)	21
Body loss - Antenna gain (dB)	2
EIRP (dBm)	19
RX	
BTS noise density (dBm/Hz) =Thermal noise density + BTS noise figure	-168
RX noise power (dBm) =-168+10*log(3840000)	-102.2
Interference margin (dB)	3
RX interference power (dBm) =10*LOG(10^((-102.2+3)/10)-10^(-102.2/10))	-102.2
Noise & interference (dBm) =10*LOG(10^((-102.2)/10)+10^(-102.2/10))	-99.2
Process gain (dB), 12.2k voice =10*log(3840/12.2)	25.0
Required Eb/No for speech (dB)	5
Antenna gain (dBi)	17
Cable and connector losses (dB)	3
Fast fading margin (dB) =slow moving mobile	4
RX sensitivity (dBm)	-129.1
Total available path loss (dB)	148.1
Dimensioning	
Log normal fading margin (dB)	7
Indoor / In-vehicle loss (dB)	0
Softhandover gain (dB)	3
Cell edge target propagation loss (dB)	144.1
Okamura-Hata cell range (km) L=137.4+35.2LOG(R)	1.55

FOR MORE INFORMATION

- <u>http://www.engadget.com/2010/01/15/3g-gsm-</u> <u>encryption-cracked-in-less-than-two-hours/</u>
- <u>http://en.wikipedia.org/wiki/W-CDMA_(UMTS)</u>
- o <u>http://en.wikipedia.org/wiki/KASUMI</u>
- o <u>http://en.wikipedia.org/wiki/3G</u>
- o http://www.3gpp.org/specifications
- <u>http://mobithinking.com/mobile-marketing-</u> <u>tools/latest-mobile-stats</u>
- o <u>http://voip.about.com/od/mobilevoip/p/3G.htm</u>
- "Basic Network Architecture and Building Blocks of WCDMA (3G) Systems"- Department of Electronics Systems, Aalborg University