Table A-6 Fourier Transforms of Mathematical Operations

Operation	f(t)	$F(\omega)$. F(f)				
Superposition	$a_1f_1(t) + a_2f_2(t)$	$a_1F_1(\omega)+a_2F_2(\omega)$	$a_1F_1(f)+a_2F_2(f)$				
Reversal	f(-t)	$F(-\omega)$	F(-f)				
Symmetry	F(t)	$2\pi f(-\omega)$	f(-f)				
Scaling	f(at)	$\frac{1}{ a }F\left(\frac{\omega}{a}\right)$	$\frac{1}{ a }F\left(\frac{f}{a}\right)$				
Delay Complex	$f(t-t_0)$	$\epsilon^{-\mu_0\omega}F(\omega)$	$\epsilon^{-j2\pi i_0 f} F(f)$				
conjugate	$f^*(t)$	$F^*(-\omega)$	$F^*(-f)$				
Modulation	$\epsilon^{i\omega_0 t} f(t)$	$F[(\omega-\omega_0)]$	$F\left(f-\frac{\omega_0}{2\pi}\right)$				
Time differentiation	$\frac{d^n}{dt^n}f(t)$	$(j\omega)^{"}F(\omega)$	$(j2\pi f)^n F(f)$				
Frequency differentiation	t"f(t)	$(j)^n \frac{d^n}{d\omega^n} F(\omega)$	$\left(\frac{j}{2\pi}\right)^n \frac{d^n}{df^n} F(f)$				
Integration	$\int_0^t f_{\epsilon}(t)dt + \int_{-\infty}^t f_0(t)dt$	$\frac{1}{j\omega}F(\omega)$	$\frac{1}{j2\pi f}F(f)$				
Integration	$\int_{-\infty}^{\infty} f(t)dt$	$\frac{1}{j\omega}F(\omega)+\pi F(0)\delta(\omega)$	$\frac{1}{j2\pi f}F(f) + \frac{1}{2}F(0)\delta(f)$				
Convolution	$f_1 * f_2 = \int_{-\infty}^{\infty} f_1(\lambda) f_2(t - \lambda) d\lambda$	$F_1(\omega)F_2(\omega)$	$F_1(f)F_2(f)$				
Multiplication	$f_1(f)f_2(t)$	$\frac{1}{2\pi}\int_{-\infty}^{\infty}F_{1}(\xi)F_{2}(\omega-\xi)d\xi$	$\int_{0}^{\infty} F_{1}(\xi)F_{2}(f-\xi)d\xi$				
Correlation	$\int f_1(\lambda)f_2^*(\lambda+t)d\lambda$	$F_1(\omega)F_2^*(\omega)$	$F_1(f)F_2^*(f)$				

Definitions:
$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t}dt$$

$$F(f) = \int_{-\infty}^{\infty} f(t)e^{-j2\pi ft}dt = F(\omega)|_{\omega=2\pi f}$$

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega)e^{j\omega t}d\omega = \int_{-\infty}^{\infty} F(f)e^{j2\pi ft}df$$

Table A-7 Fouri	Fourier Transforms of Energy Signals	rgy Signals	
, , ,	f(t)	$F(\omega)$	F(1)
-7/2 0 7/2 Rectangular	$u\left(t+\frac{T}{2}\right)-u\left(t-\frac{T}{2}\right)$	$T \frac{\sin(\omega T/2)}{\omega T/2}$	$T \frac{\sin(\pi \mathcal{T} f)}{\pi \mathcal{T} f}$
	$e^{-at}u(t)$	$\frac{1}{\omega + \alpha}$	$\frac{1}{j2\pi f + \alpha}$
Exponential			
\rightarrow	$1-2 \frac{ f }{T}, f < \frac{7}{2}$	$\frac{T}{2} \left[\frac{\sin(\omega T/4)}{\omega T/4} \right]^2$	$\frac{I}{2} \left[\frac{\sin(\pi^{Tf/2})}{\pi^{Tf/2}} \right]^2$
-7/2 0 7/2 Triangular	O elsewhere		
>-	€-a ² , ²	$\frac{\sqrt{\pi}}{a} \epsilon^{-(\omega^2/4\alpha^2)}$	$\frac{\sqrt{\pi}}{a} e^{-(\pi^2 f^2/a^2)}$
Gaussian 1 Double exponential	e-a [/]	2 a 2 + w 2	$\frac{2a}{a^2+4\pi^2f^2}$
- November 1	$\epsilon^{-at}\sin(\omega_0t)u(t)$	$\frac{\omega_0}{(\alpha+j\omega)^2+\omega_0^2}$	$\frac{\omega_0}{(a+/2\pi f)^2 + \omega_0^2}$
Damped cosine	e ^{-af} cos(w ₀ f)v(t).	$\frac{\alpha + /\omega}{(\alpha + /\omega)^2 + \omega_0^2}$	$\frac{a+j2\pi f}{(a+j2\pi f)^2+\omega_0^2}$
>	$\frac{1}{\beta - \alpha} \left[\epsilon^{-\alpha t} - \epsilon^{-\beta t} \right] u(t)$	$\frac{1}{(j\omega+a)(j\omega+\beta)}$	1 (/2mf + a)(/2mf + B
Cosine pulse	$\cos \omega_0 t \left[u(t + \frac{T}{2}) - u(t - \frac{T}{2}) \right]$	$\frac{T}{2} \left[\frac{\sin(\omega - \omega_0) T/2}{(\omega - \omega_0) T/2} + \frac{\sin(\omega + \omega_0) T/2}{(\omega + \omega_0) T/2} \right]$	$\frac{\tau}{2} \left[\frac{\sin \pi \tau (t - t_0)}{\pi \tau (t - t_0)} + \frac{\sin \pi \tau (t + t_0)}{\pi \tau (t + t_0)} \right]$

 $^{^1\}mathrm{From}$ Continuous and Discrete Signal and System Analysis, McGillem and Cooper, 1974

The error function, denoted by erf(u), is defined in a number of different ways in the literature. We shall use the following definition:

$$\operatorname{erf}(u) = \frac{2}{\sqrt{\pi}} \int_0^u \exp(-z^2) \ dz$$
 (A7.1)

The error function has two useful properties:

$$\operatorname{erf}(-u) = -\operatorname{erf}(u)$$

(A7.2)

This is known as the symmetry relation.

As u approaches infinity, erf(u) approaches unity; that is

$$\frac{2}{\sqrt{\pi}} \int_0^\infty \exp(-z^2) \ dz = 1$$

(A7.3)

The complementary error function is defined by

$$\operatorname{erfc}(u) = \frac{2}{\sqrt{\pi}} \int_{u}^{\infty} \exp(-z^{2}) \ dz \tag{A7.4}$$

Table A7.1 The Error Function

1.05	1.00	0.95	0.90	0.85	0.80	0.75	0.70	0.65	0.60	0.55	0.50	0.45	0.40	0.35	0.30	0.25	0.20	0.15	0.10	0.05	0.00	n
0.86244	0.84270	0.82089	0.79691	0.77067	0.74210	0.71116	0.67780	0.64203	0.60386	0.56332	0.52050	0.47548	0.42839	0.37938	0.32863	0.27633	0.22270	0.16800	0.11246	0.05637	0.00000	erf(u)
3.30	3.00	2.50	2.00	1.95	1.90	1.85	1.80	1.75	1.70	1.65	1.60	1.55	1.50	1.45	1.40	1.35	1.30	1.25	1.20	1.15	1.10	u
0.999998	0.99998	0.99959	0.99532	0.99418	0.99279	0.99111	0.98909	0.98667	0.98379	0.98038	0.97635	0.97162	0.96611	0.95970	0.95229	0.94376	0.93401	0.92290	0.91031	0.89612	0.88021	erf(u)

^a The error function is tabulated extensively in several references; see for example, Abramowitz and Stegun (1965, pp. 297–316).

It is related to the error function as follows:

$$\operatorname{erfc}(u) = 1 - \operatorname{erf}(u)$$

(A7.5)

Table A7.1 gives values of the error function erf(u) for u in the range 0 to

A7.2 THE Q-FUNCTION

Consider a *standardizad* Gaussian random variable X of zero mean and unit variance. The probability that an observed value of the random variable X will be greater than v is given by the *Q-function*:

$$Q(v) = \frac{1}{\sqrt{2\pi}} \int_{v}^{\infty} \exp\left(-\frac{x^2}{2}\right)$$
 (A7.9)

The Q-function defines the area under the standardized Gaussian tail. Inspection of Eqs. (A7.4) and (A7.9) reveals that the Q-function is related to the complementary error function as follows:

$$Q(v) = \frac{1}{2}\operatorname{erfc}\left(\frac{v}{\sqrt{2}}\right) \tag{A7.10}$$

Conversely, putting $u = v/\sqrt{2}$, we have

$$\operatorname{erfc}(u) = 2Q(\sqrt{2}u) \tag{A7.11}$$

 $^{^2{\}rm From~Communication~Systems,~3rd~Ed.,~Simon~Haykin,~1994}$