Ground Reflection (2-ray) Model

This is a simple model for propagation over ground.

Assume two components arrive at receiver: one LOS and one reflected from the ground. For small angles of incidence assume the reflection coefficient $\Gamma=-1$.

At large distances compared to the antenna heights the two components will have approximately equal amplitude and a small phase difference:

$$
\theta_{\delta}=\frac{2 \pi \delta}{\lambda}
$$

where δ is the path length difference which can be approximated as:

$$
\delta \approx \frac{2 h_{t} h_{r}}{d}
$$

For large $d\left(\gg \sqrt{h_{t} h_{r}}\right)$ it can be shown (see Rappaport for derivation) that:

$$
P_{r} \approx P_{t} G_{t} G_{r} \frac{h_{t}^{2} h_{r}^{2}}{d^{4}}
$$

For this model the path loss varies as d^{4}, the square of the antenna heights and is independent of frequency.

This approximation does not apply for distances that are short relative to the antenna heights.

Exercise 1: You want to set up an over-water link to provide data service to a ferry. The maximum distance from the terminal to the ferry is 10 km . The antenna heights are 20 m at the terminal and 10 m at the ferry. You can use 20 dBi antennas at each end and 1W transmit power. What will be the received power in Watts and dBm ?

