ELEX 7860 : Wireless System Design
2024 Winter Term

Information and Capacity

This lecture reviews some topics from probability and describes channel capacity.

After this lecture you should be able to: compute marginal and joint probabilities from 2D distributions, determine if two
random variables are independent and identically distributed from their joint distribution, find the autocorrelation of a
stochastic process and its power spectrum, compute the information of a message and the entropy of a message source,
compute the capacity of BSC and AWGN channels, compute FER from BER for independent bit errors, distinguish between

lossy and lossless compression.

Model of a Communication System
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Fig. 1—Schematic diagram of a general communication system,
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The diagram above shows a model for a communi-
cation system that includes the following!:

« information source - generates a sequence of
“messages,” taken from a limited set of possi-
ble values. These values might be a set of volt-
age levels that taken together convey a percep-
tible sound or image. The messages might also
convey more abstract information called “data”
which could represent, for example, the charac-
ters in a document or perhaps numbers whose
meaning is unknown (“opaque”) to the commu-
nication system

« transmitter - a device that converts the messages
into a time-varying voltage or current (a “sig-
nal”) that can be carried over the channel

« channel - carries the signal from the transmit-
ter to the receiver, often distorting it and adding
random signals called “noise”

« receiver - a device that attempts to recover the
messages that were transmitted

!The diagram is from Claude Shannon’s fundamental paper,
“A Mathematical Theory of Communication,” The Bell System
Technical Journal, Vol. 27, pp. 379-423, 623-656, July, October,
1948.
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« data destination - (sometimes called a “sink”)
such as a person or computer that makes use of
the information

Review of Probability

A random variable is one whose value cannot be pre-
dicted. Examples in communication systems are the
information generated by a source and the noise in-
troduced by the channel.

Although the value of a random variable cannot be
predicted, we can define certain properties of these
variables called statistics.

A statistic called the expected value of a random
variable X, denoted by E[X] or X, is the expected av-
erage value of X over many “trials” (e.g. many differ-
ent instances of a noise source or many instance of
time).

The n’th moment of X is E[X"] and the n’th cen-
tral moment is E[(X — X)"]. The first moment is also
called the mean and the second central moment the
variance (often written o).

Random variables can be discrete (e.g. bits) or con-
tinuous (e.g. voltage). The integral of the probability
density function between a and b is the probability
that the random variable will have a value between
these values.

Exercise 1: How would you represent a discrete r.v. in a pdf?

The definite integral of the pdf ( f_cio px(x)dx)is1
because the probability that the rv has a finite value
is1.

Stochastic Processes

‘We are often interested in random variables that are
functions of time. These are called stochastic pro-
cesses.
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A stationary stochastic process is one whose statis-
tics do not vary with time. These are analogous to
time-invariant signals and are important for the same
reason — we only have to deal with time differences
rather than the actual time. There are various types
of stationarity depending on which statistics are inde-
pendent of time (e.g. “‘strictly” or “weak-sense” sta-
tionarity).

Exercise 2: s the radio noise received from the sun a stationary

stochastic process? Under what conditions?

Multivariate Random Processes

We can define a two-dimensional probability density
function (pdf) p(X, Y) which is called the joint pdf of
the random variables X and Y.

If p(X,Y) = p(X)p(Y) then X and Y are said
to be independent. This allows us to compute the
joint probability using the marginal probabilities. We
often deal with variables that are independent and
identically distributed (i.i.d.).

For example, the joint pdf of two independent
Gaussian random variables, X and Y, looks like:

p(x.y)

However, if X has a normal distributionbut Y = X
and then the joint pdf would be:

Exercise 3: Describe the shape of the joint pdf of two zero-mean iid

random variables with uniform pdfs extending between +0.5. What

if they had triangular pdfs extending between +1?

The covariance of two random variables is defined
as:

cov(X,Y) = E[(X — E[X])(Y — E[Y])] .

Two random variables are uncorrelated if their covari-
ance is zero. This is a weaker condition than inde-
pendence (two rv can be uncorrelated but not inde-
pendent).

Exercise 4: Two random variables, X and Y represent two flips
of a coin (outcomes are H or T for each). Draw the joint pdf if the
two coins are fair (unbiased) and the outcomes are independent.
Draw the joint pdfif the His twice as likely as T but the outcomes are
independent. Draw the joint pdfif the coins are fair but the outcome
of the second toss depends on the first and is always the opposite.
Which of these are identically distributed? Which are independent
rv.? Which are i.i.d.?

A relevant example of a joint pdf is a communi-
cation system using NRZ signalling over an AWGN
channel where the transmitted value, X, is equally
likely to be +1 and the output of the channelis Y =
X + N where N is normally distributed with mean 0
and variance 1. The joint PDF is:



Functions of Random Variables

The pdf of a sum of two zero-mean independent ran-
dom variables is the convolution of the individual
pdfs.
Exercise 5: What is the pdf of the sum of two zero-mean iid
uniformly-distributed rv’s whose pdf has a maximum value of 1?

The Central Limit Theorem states (roughly) that
the sum of a large number of independent random
variables tends to a distribution that has a Gaussian
distribution.

The second moment (power) of the sum of two in-
dependent random variables is the sum of their pow-
ers.

Exercise 6: Prove this.

The autocorrelation function of a stationary

stochastic process is defined by

Rxx(t) = E[X(OX(t —1)] .

The autocovariance is similarly defined (by subtract-
ing the mean).

The autocorrelation function and the power spec-
trum of a random signal are a Fourier transform pair.

Information Theory

We can model sources as generating one of a lim-
ited number of messages. For example, the messages
might be letters, words, pixel values, or measure-
ments. Different messages will often have different
probabilities. The probability of a particular message
is the fraction of messages of that type.

Exercise 7: We observe a source that outputs letters. Out of 10,000
letters 1200 were ’E’. What would be a reasonable estimate of the
probability of the letter ’E’?

We define the information that is transmitted by a
message that occurs with a probability P as:

I = —log,(P) bits

For example, a message with a probability of L con-
veys 1 bit of information. While one with a probabil-
ity of i carries 2 bits of information. Thus, less likely
messages carry more information.

Entropy

The information rate (also known as the “entropy”)
of a source in units of bits per message can be com-
puted as the average information generated by the
source:

H= Z(_ log,(P;) X P;) bits/message
7

where P; is the probability of the i’th message.

Exercise 8: A source generates four different messages. The first
three have probabilities 0.125, 0.125, 0.25. What is the probability of
the fourth message? How much information is transmitted by each
message? What is the entropy of the source? What is the average
information rate if 100 messages are generated every second? What

if there were four equally-likely messages?

Mutual Information

The mutual information is defined as:

bits

IX;)=> > p(x,y)logz(
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where X and Y are the channel input and output ran-
dom variables, and is the average over all possible in-
put/output pairs of the ratio of the joint probability
and the product of the marginal probabilities.

Exercise 9: What is the mutual information if X and Y are inde-

pendent? If they are the same?

Capacity

Shannon defined the capacity of a channel as the
maximum mutual information between the input
and output of a channel:

C=maxI(X;Y).
X



where the maximization is over all possible distribu-
tions of X.

Shannon showed that it is possible to transmit in-
formation with an arbitrarily low error rate if the in-
formation rate is less than the capacity of the channel.
He also showed that it is not possible to achieve an ar-
bitrarily low error rate if the information rate exceeds
the channel capacity.

Shannon’s proof does not provide a means to de-
sign a system that can achieve capacity. It is therefore
an upper bound. Shannon’s work also hinted that
using error-correcting codes with long codewords
(to be discussed later) should allow us to achieve
arbitrarily-low error rates as long as we limit the in-
formation rate to less than the channel capacity.

In practice, attempting to transmit at information
rates above capacity results in high error rates.

Examples

BSC One example of a channel is the Binary Sym-
metric Channel (BSC). This channel transmits dis-
crete bits (0 or 1) with a bit error probability (BER)
of p. The transition probabilities between the chan-
nel input (x) and output (y) can be drawn as:

1-
0 P o

X p y
1 1
1-p

and the joint probability (for equally likely bits) can
be drawn as:

PXY)

The capacity of the BSC in units of information bit
per “channel use” (transmitted bit) is :

C=1—(-plog,p—(1-p)log,d—p))

which is 0 for p = 0.5 (when each transmitted bit
is equally likely to be received right or wrong) and 1
when p = 0 (the error-free channel) or when p = 1
(a perfectly inverting channel):

Capacity of BSC
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Exercise 10: What is capacity of a binary channel with a BER of %

(assuming the same BER for 0’s and 1s)?

AWGN Channel For a continuous channel corrupted
by Additive White Gaussian Noise (AWGN):

X Y=X+Z
SZGX
N

z %
the capacity can be shown to be:

C=Blog2<1+%>

where C is the capacity (b/s), B is the bandwidth (Hz)
and % is the signal to noise (power) ratio.

Exercise 11: What is the channel capacity of a 4 kHz channel with
an SNR of 30dB?

The capacity of the AWGN channel is achieved
when the probability distribution of the signal is
Gaussian.

Exercise 12: Can we achieve the capacity of a AWGN channel by
transmitting an NRZ waveform? Can we achieve the capacity of a
BSC channel?

Some systems using modern forward error-
correcting (FEC) codes such as Low Density Parity
Check (LDPC) codes can communicate over AWGN
channels with SNRs a fraction of a dB more than
that required by the capacity theorem (with very low
error rates).

For many wireless communication systems the
channel input and output may be vectors represent-
ing the signals transmitted and/or received by more
than one antenna: y = Hx + N where N is the noise
vector and x and y are the transmitted and received
signal vectors. As with the scalar channel, it’s possi-
ble to find the capacity of the AWGN vector channel
as a function of bandwidth, H and the noise power.



Other Channel Models Capacity can be calculated
for any channel for which we can define the mu-
tual information. For example, channels with spe-
cific types of coding, modulation, fading, diversity,
additive noise, interference, feedback, etc.

Bit and Frame Error Rates

The bit error rate (BER, E,) is the average fraction of
bits that are received incorrectly.

When these bits are grouped into “frames” we are

often interested in the average fraction of the frames
that contain one or more errors. This is known as the
FER (Frame Error Rate). Sometimes frames include
additional bits that allow us to detect most, but not
all, errors. We usually want the UEP (Undetected Er-
ror Probability) to be very small (e.g. one undetected
error per many years).
Exercise 13: You receive 1 million frames, each of which contains
100 bits. By comparing the received frames to the transmitted ones
you find that 56 frames had errors. Of these, 40 frames had one bit
in error, 15 had two bit errors and one had three errors. What was
the FER? The BER?

When error are independent it possible to compute
the FER from the BER: the probability that a frame is
correct is the probability that all of the bits are correct.
Thus FER =1 — (1 — B)N where N is the number of
bits in a frame.

Exercise 14: The BER over a channel that sees independent bit er-
rors is 1075, What is the FER for 128-byte frames? For 9000-byte
frames?

Compression

When data is not random and we can make use of the
redundancy to reduce the amount of data that needs
to be transmitted. Both lossless and lossy compres-
sion are examples of “source coding.”

Lossless. Some types of data contains redundancy
such as sequences of bits or bytes that occur more of-
ten than others. This type of data can be compressed
before transmission and then decompressed at the re-
ceiver without loss of information. An example of
this “lossless” compression is the ‘zip’ compression
used for computer files.

Another definition of information rate is “the min-

imum data rate, assuming the best possible lossless

compression”. Lossless compression does not reduce
the information rate but it may reduce the bit rate.

Lossy. Data representing speech and video can of-
ten be compressed with little degradation because
humans cannot perceive certain details of sounds and
images. These details can be removed resulting in
lower data rates. Examples of these “lossy” compres-
sion techniques include “MP3” for compressing au-
dio and MPEG-4 for video.
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