Solutions to Quiz 3

Question 1

There were two versions of this question. A transmitter outputs a random signal X that is either +1 V (or +2 V) or -1 V (or -2 V) with equal probabilities. The channel adds a random independent noise signal, N, that is -1 V (or -2 V) 10% (or 20) \% of the time and 1 V (or 2 V) otherwise. The received signal is $Y=X+N$. Calculate the probability of each possible value of Y. Sketch the marginal probability density function $P_{Y}(y)$ and the joint probability density function $P_{X Y}(x, y)$.

Answer

Since the X and N are independent, $P_{X Y}(x, y)=$ $P_{X}(x) P_{N}(n)$ and we can calculate the possible values of Y and their probabilities as follows for the first version of the question:

x	n	$p(x)$	$p(n)$	y	$P(x, y)$
+1	+1	0.5	0.9	2	0.45
+1	-1	0.5	0.1	0	0.05
-1	+1	0.5	0.9	0	0.45
-1	-1	0.5	0.1	-2	0.05

from which $p_{Y}(-2)=0.05, p_{Y}(0)=0.5, p_{Y}(2)=$ 0.45 , and for which $P_{Y}(y)$ and $P_{X Y}(x, y)$ are:

and as follows for the second version of the question:

x	n	$p(x)$	$p(n)$	y	$P(x, y)$
+2	+2	0.5	0.8	4	0.40
+2	-2	0.5	0.2	0	0.10
-2	+2	0.5	0.8	0	0.40
-2	-2	0.5	0.2	-4	0.10

from which $p_{Y}(-4)=0.1, p_{Y}(0)=0.5, p_{Y}(4)=0.4$, for which $P_{Y}(y)$ and $P_{X Y}(x, y)$ are:

Question 2

The specification for a transmitter requires that the transmitted signal power fall below the "mask" shown at right where B is the bandwidth of the signal at the input to the final amplifier. If the required output power is 25 dBm , what is this amplifier's minimum required output IP3?

There were two versions of the diagram:

and

Answer

The third-order products fall in the adjacent channel and need to be 30 dB (or 40 dB) below the inchannel signal. The third-order products decrease (in dB) 3 times faster than the in-channel signal. If Δ is the reduction of the in-channel signal from OIP3,
$2 \Delta=30 \mathrm{~dB}$ (or 40 dB) is the reduction of the adjacentchannel signal from the in-channel signal and $\Delta=$ $30 / 2=15 \mathrm{~dB}$ (or $40 / 2=20 \mathrm{~dB}$). Thus the required $\mathrm{OIP}=25+15=40 \mathrm{dBm}($ or $25+20=45 \mathrm{dBm})$.

Question 3

A receiver has an LNA with a noise figure of 1.8 dB and a gain of 6 dB . This is followed by a mixer with a noise figure of 6 dB and a gain of 3 (or 6) dB . This is followed by amplifier with a noise figure of 10 dB and a gain of 30 dB . What is the noise figure of the cascade of these three devices?

Answer
Converting to linear units, $F_{1}=1.5, G_{1}=4, F_{2}=$ $4, G_{2}=2$ (or $G_{2}=4$), and $F_{3}=10, G_{3}=1000$. Using the equation for the cascade noise figure:

$$
\begin{aligned}
F & =F_{1}+\frac{F_{2}-1}{G_{1}}+\frac{F_{3}-1}{G_{1} G_{2}}=1.5+\frac{4-1}{4}+\frac{10-1}{4 \times 2(\text { or } 4)} \\
& \approx 3.38=5.3 \mathrm{~dB}(\text { or } 2.81=4.5 \mathrm{~dB}) .
\end{aligned}
$$

