Solutions to Quiz 1

A block code has the following parity check matrix:

$$
H=\left[\begin{array}{lllllll}
1 & 0 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Question 1

The generator matrix has dimensions $(n-k) \times n$ and this matrix has dimensions 3×7 thus $n-k=3, n=7$ and $k=n-(n-k)=7-3=4$.

Question 2

For a systematic code with the parity bits transmitted first the parity check matrix is

$$
H=\left[P^{T} \mid I_{n-k}\right]
$$

and the generator matrix is:

$$
G=\left[I_{k} \mid P\right]
$$

so in this case the generator matrix is:

$$
G=\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 & 1
\end{array}\right]
$$

Question 3

If the data to be transmitted is d the codeword transmitted is $c=d G$. For $d=\left[\begin{array}{lll}1 & 1 & 1\end{array} 1\right]$ and G as above the transmitted codeword is $d=\left[\begin{array}{llllll}1 & 1 & 1 & 1 & 1 & 1\end{array}\right]$.

Question 4

If the codeword $c=\left[\begin{array}{ccccccc}1 & 0 & 1 & 1 & 1 & 0 & 0\end{array}\right]$ is received the syndrome is $H c^{T}=\left[\begin{array}{ll}0 & 0\end{array}\right]$. This codeword does not contain an error since the syndrome is all zeros.

If the codeword $c=\left[\begin{array}{ccccccc}1 & 0 & 0 & 1 & 1 & 1 & 0\end{array}\right]$ is received the syndrome is $H c^{T}=\left[\begin{array}{ll}1 & 0\end{array} 1\right]$. This codeword does contain an error since the syndrome is not all zeros.

Calculations

Matlab (Octave, actually) can check the calculations:

$$
\begin{aligned}
H & =\left[\begin{array}{llllllll}
1 & 0 & 1 & 1 & 1 & 0 & 0 & ; \\
1 & 1 & 1 & 0 & 0 & 1 & 0 & ; \\
0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right] \\
G & =\left[\operatorname{eye}(4), H(:, 1: 4)^{\prime}\right]
\end{aligned}
$$

1	0	0	0	1	1	0
0	1	0	0	0	1	1
0	0	1	0	1	1	1
0	0	0	1	1	0	1

$\mathrm{d}=\left[\begin{array}{lllll} & 1 & 1 & 1 & 1\end{array}\right]$
$\bmod (d * G, 2)$
$\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$
$c=\left[\begin{array}{llllllll}1 & 0 & 1 & 1 & 1 & 0 & 0\end{array}\right]$
$\bmod \left(H * c^{\prime}, 2\right)$

0
0
0
$c=\left[\begin{array}{lllllll}1 & 0 & 0 & 1 & 1 & 1 & 0\end{array}\right]$
$\bmod \left(H * c^{\prime}, 2\right)$

1
0
1

