Solutions to Quiz 1

A block code has the following parity check matrix:

$$H = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

Question 1

The generator matrix has dimensions $(n-k) \times n$ and this matrix has dimensions 3×7 thus n-k = 3, n = 7and k = n - (n - k) = 7 - 3 = 4.

Question 2

For a systematic code with the parity bits transmitted first the parity check matrix is

$$H = \left[P^T | I_{n-k}\right]$$

and the generator matrix is:

$$G = \left[I_k | P \right]$$

so in this case the generator matrix is:

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}$$

Question 3

If the data to be transmitted is *d* the codeword transmitted is c = dG. For $d = [1 \ 1 \ 1 \ 1]$ and *G* as above the transmitted codeword is $d = [1 \ 1 \ 1 \ 1 \ 1 \ 1]$.

Question 4

If the codeword $c = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 0 & 0 \end{bmatrix}$ is received the syndrome is $Hc^T = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$. This codeword does not contain an error since the syndrome is all zeros.

If the codeword $c = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}$ is received the syndrome is $Hc^T = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}$. This codeword does contain an error since the syndrome is not all zeros.

Calculations

Matlab (Octave, actually) can check the calculations:

H = [10 11 91	1 1 1 0 1 1	10 01	0; 0; 1]		
G = [eye(4),H	(:,1	:4)']	l	
1 0 0	0 1 0 0	0 0 1 0	0 0 0 1	1 0 1 1	1 1 1 0	0 1 1 1
d = [1 1	1 1]			
mod(d	*G,2)				
1	1	1	1	1	1	1
c=[1	01	11	00]		
mod(H*c',2)						
0 0 0						
c = [10	01	11	0]		
mod(H	*c',:	2)				
1 0 1						