Multipath Fading
Exercise 1: Show that $R_{r m s}^{2}$ is the mean power of the signal.
(1) Using definition of second moment:

$$
\begin{aligned}
& R_{r m s}^{2}=\int_{0}^{\infty} r^{2} p(r) d r . \quad p(r)= \begin{cases}\frac{r}{\sigma^{2}} \exp \left(-\frac{r^{2}}{2 \sigma^{2}}\right) & r \geq 0 \\
0 & r<0\end{cases} \\
= & \int_{0}^{\infty} \frac{r^{3}}{\sigma^{2}} e^{\frac{-r^{2}}{2 \sigma^{2}}} d r=2 \delta^{2} \quad(\text { see next page) }
\end{aligned}
$$

(2) As power of constant (\vec{r}) +plus zevo-mean

$$
\begin{aligned}
& \text { power of constant }(\bar{r}) \text { +plus zero }- \text { mean } \\
& \bar{r}^{2} \not \text { fixed }^{2}+(r-\bar{r})^{2}= \\
& 1
\end{aligned}
$$

$$
\begin{aligned}
& \bar{r}^{2}+(r-\bar{r})^{2}= \\
& \imath^{2} \downarrow \\
& R_{r M s}=\sqrt{\left(\sigma \sqrt{\frac{\pi}{2}}\right)^{2}+\sigma^{2}\left(2-\frac{\pi}{2}\right)} \\
&=\sqrt{\sigma^{2} \frac{\pi}{2}+2 \sigma^{2}-\frac{\pi}{2} \sigma^{2}}
\end{aligned}
$$

(3) As sum of two or thoganal $r . v$.

$$
=\sqrt{2} 6
$$

$$
\begin{aligned}
\overline{|r|^{2}} & =\overline{\operatorname{Re}^{2}\{r\}}+\frac{\operatorname{In}^{2}\{r\}}{\operatorname{Re}^{2}\{r\}}+\overline{\operatorname{Im}^{2}\{r\}} \quad(\overline{\operatorname{Re}\{r\}}=\overline{\operatorname{Im}\{r\}}=0) \\
& =\sigma^{2}+\sigma^{2}=2 \sigma^{2} \\
& =\sigma^{2}
\end{aligned}
$$

In [1]: \quad from sympy import *

In [2]: M init_session()

In [3]: M s, r = symbols("sigma r ", positive=True)
In [4]: M \# Rayleigh pdf
pdf $=r / s^{* *} 2^{*} \exp \left(-r^{* *} 2 /\left(2 * s^{* *} 2\right)\right)$
pdf

Out[4]: $\frac{r e^{-\frac{r^{2}}{2 \sigma^{2}}}}{\sigma^{2}}$
In [5]: M \# first moment
rbar $=$ integrate $\left(r^{*}\right.$ pdf, $\left.(r, 0, \infty 0)\right)$
rbar
Out [5]: $\frac{\sqrt{2} \sqrt{\pi} \sigma}{2}$
In [6]: \quad \# second central moment integrate((r-rbar)**2*pdf, (r, 0,00))
out[6]: $-\frac{\pi \sigma^{2}}{2}+2 \sigma^{2}$
In [7]: M \# second moment integrate(r**2*pdf, (r, $0, \infty$))

Out[7]: $2 \sigma^{2}$

Exercise 2: What fraction of the time is a Rayleigh-distributed signal 10 dB below the mean? 20 dB ? 30 dB? This is a useful result to remember.

$$
\rho=\frac{R^{\kappa}}{R_{r m s}}=-10 d B
$$

$$
\begin{aligned}
\rho=10^{\left(\frac{-10}{20}\right)} & =0.316 \\
& -0.316^{2}
\end{aligned}
$$

$$
\begin{aligned}
1-e^{-\rho^{2}}=1-e^{-0.316^{2}} & \approx 0.1 \quad 1 \quad 1-e^{-\operatorname{ANS}=} \\
-20 & \approx 0.01 \\
-30 & \approx 0.001
\end{aligned}
$$

Exercise 3: A receiver in a car receives a 1.8 GHz signal while travelling on a road at $50 \mathrm{~km} / \mathrm{h}$. The road is at an angle of 30 degrees

$$
f_{c}=1.8 \times 10^{9}
$$ relative to the direction of arrival of the signal. What is the velocity relative to the direction of arrival of the signal? By how much does the path length change each second (in meters)? In wavelengths? What is the Doppler shift? ${ }_{3} \mathrm{O}$

$$
\begin{aligned}
& v=\frac{50 \times 10^{3}}{3600} \cdot \cos 30 \approx 12 . \quad \frac{\mathrm{m}}{\mathrm{~s}} \\
& 12 \mathrm{~m} / \mathrm{s} . \\
& \quad \frac{12 \mathrm{~m} / \mathrm{s}}{0.17 \mathrm{~m} / \mathrm{w}}=72 \text { wavelegths } / \mathrm{s} . \\
& f_{D}=\frac{v}{c} \quad f_{c}=\frac{12}{3 \times 10^{8}} 18 \times 10^{8} \approx 0.17 \mathrm{~m} / \mathrm{wam} .
\end{aligned}
$$

Exercise 4: How often will the signal drop 10dB below the mean if the carrier frequency is 1.8 GHz and the velocity is $100 \mathrm{~km} / \mathrm{h}$? On average, how long will each of these fades last?

$$
\begin{aligned}
& \rho=-10 d B=20 \log \frac{R}{R_{m s}}=20 \log \rho \\
& f_{m}=\frac{v}{c} f_{c}=\frac{100 \times 10^{3}}{3600} \cdot \frac{1}{3 \times 10^{8}} \cdot 1.8 \times 10^{9}=167 H_{z} \\
& N_{R}=\sqrt{2 \pi} f_{m} \rho e^{-\rho^{2}}=0.316 \\
& \rho=10 e^{-\frac{10}{20}}=\frac{1}{\sqrt{10}}=\frac{1}{10} \\
& N_{\pi}=\sqrt{2 \pi} \cdot 167 \cdot 0 \cdot 316 \cdot 1 \\
&= 1204 z \\
& \bar{\tau}=\frac{e^{\rho^{2}}-1}{\rho f_{m} \sqrt{2 \pi}}=\frac{e^{\frac{1}{10}}}{\frac{1}{\sqrt{10}} \cdot 167} \sqrt{2+t}
\end{aligned}
$$

Exercise 5: What is the product of N_{R} and $\bar{\tau}$? How does this compare to $P(r \leq R)$?

$$
\begin{aligned}
N_{R} & =\sqrt{2 \pi} \text { fop } \rho e^{-\rho^{2}} \quad \bar{\tau}
\end{aligned}=\frac{e^{\rho^{2}}-1}{\rho f_{m} \sqrt{2 \pi}}
$$

Exercise 6: A channel has three multipath components with delays of 1,2 and 3μ s and amplitudes of 10,6 and 0 dEm respectively.
What are the excess delays, the power delay profile, the normalWhat are the excess delays, the power delay profile, the normal-
ized power delay profile, the mean excess delay and the RMS delay

normalized pover-delay profile $p(x)$
 $\Sigma \Gamma(0)$

$$
\begin{aligned}
\bar{\tau}= & \sum p(\tau) \tau=0.66 \cdot 0+0.27 .1+0.06 \cdot 2 \\
& =0.27+0.12=0.39 . \mu \mathrm{s}
\end{aligned}
$$

$$
\sigma=\sqrt{p(\tau)(\imath-\tau)^{2}}=
$$

$$
\begin{aligned}
\sigma^{2}= & 0.66(0-0.39)^{2}+0.27(1-0.39)^{2} \\
& +0.06(2-0.39)^{2} \\
\sigma= & 0.61 \mu s
\end{aligned}
$$

Using Octave:

```
>> t=[1,2,3];
>>t=t-min(t);
>>p=[10,6,0];
>>p=10.^(p/10);
>>p=p/sum(p);
>> tbar= sum(t.*p)
tbar=0.39924
>>s = sqrt(sum(p.*(t-tbar).^2))
s=0.61102
```

Exercise 7: Imagine a receiver traveling in a straight line towards a transmitter but with no LOS path. How could you arrange reflecting objects such that there was no time dispersion (flat fading)? What arrangement would result in no time-varying fading? Neither?
 Leach path is some length \& all simultaneously from
indistinguishable hos propaga

