Diversity

Exercise 1: Which of these might lead to a reduction in system efficiency by requiring more time or bandwidth? Which of these would require additional or more complex antennas?

	heed more time or freq	combaily
Space	No	YES
treat	YEG-(FREQ)	Ye 5
Time	YES (TIME)	SOMEWHAT
Polar ization	No	YE S
	1	

Exercise 2: What spacing is required for 10λ separation at 900 MHz?

900 MHz
$$\lambda = \frac{c}{f} = \frac{3 \kappa 188}{9 \times 10^8} = 33 cm.$$

Exercise 3: What time difference results from a path length difference of d m? If the frequency is f, What is the resulting phase difference? What difference in f is required for two equal-gain paths to cancel each other? How far apart would the frequency nulls be for a channel with two equal-gain paths with path lengths that differ by 300m? By 30m? What time delay differences does this correspond

$$\frac{\Delta \theta}{delay} = \frac{2\pi f d}{c}$$

$$\frac{d}{delay} = \frac{2\pi f d}{phose} difference$$

$$\frac{d}{delay} = \frac{360 \text{ m/ms}}{c}$$

e.j.
$$d = 150 \text{m}$$
 $c = 360 \text{m/m}$
 $\Delta \theta = 2 \text{m}$ $f \frac{d}{c} = 2 \text{m}$ $f \frac{150}{300} = \pi - f$

$$\frac{2\pi f_n d}{c} = (2n+1)\pi$$

$$f_n = \frac{(2n+1)\pi}{2\pi d}$$

$$f_n = 6.5(2n+1) = n+1/2$$

 $f_{n+1} = 6.5(2(n+1)+1) = n+1+1/2$
 $f_{n+1} - f_n = 1$

$$f_n = \frac{3 \times 10^8}{2.300} = 6.5 (2n + 1) MHz$$

for d= 300 m

Exercise 4: Would time diversity be more or less effective as the receiver's speed increased? What would happen if the receiver was stopped (such as a traffic light)?

stopped (such as a traffic light)? -Parter -> less time between fædes-> less delay fales on a duration of Frances until then less likely to receive signal min regid signal strength complete frame 5 trong th frame duration K tode frome dustion >> fode dwation no change in toding 56 pped -> time diversity not effective.

XIAXI are noise (independent r.V.)

in depence:

The branch SNRs were +10 dB and +20 dB? If they

3?

$$10 \text{ dB} + 20 \text{ dB} = 30 \text{ B}$$
. Wrong

 $10 \text{ dB} + 100 = 100 \approx 20 \text{ dB}$.

Exercise 6: Assuming independent Rayleigh fading, the same SNRs as in the previous exercise and that the signal is considered "faded" if the SNR is below 0 dB, what fraction of time would be signal be faded with and without two-branch selection diversity?

$$-0 dB$$

$$-0 dB$$

$$P (fade) = 10\% P = 1\%$$

$$P (both faded) = 6.1 \times 0.01 = 10^{-3} = 0.1\%$$

$$P (both faded) = 6.1 \times 0.01 = 10^{-3} = 0.1\%$$

$$P (both faded) = 10 dB : P (both) = 10\%$$

Exercise 7: What type of diversity would you expect to be implemented in an (inexpensive) WLAN card? In a cellular base station?

- cheap: suitching - base station: maximal ratio.