RF Design - Noise

Exercise 1: What are the minimum possible values of T_e and F?

if amplifier adds no noise
$$kT_{e}B = 0$$

minimum $T_{e} = 0$

Then $F = \frac{T + T_{e}}{T} = 1$

if $T_{e} > 0$ $F > 1$ (0 dB)

Exercise 2: The datasheet for a low-noise amplifier (LNA) specifies a noise figure of 2 dB. What is the noise temperature T_e ?

$$2 dB = 10^{\frac{2}{10}}$$

$$= 1.6$$

Exercise 3: An LNA with a noise figure of 0.3 dB receives a signal with an SNR of 6 dB. What is the output SNR?

$$F = \frac{5./\nu}{50/\nu_0} = 1.07 = \frac{4}{50/\nu_0}$$

$$50/\nu_0 = \frac{4}{1.07} = 3.73 = 5.7 \text{ dB}$$

$$0.3dB = 10^{\frac{6.3}{18}}$$

Exercise 4: A What is the system noise figure of a receiver that consists of a 10 dB amplifier with 3 dB noise figure followed by a mixer with a 6 dB loss and an IF amplifier with a 20dB gain and a noise figure of 10 dB?

$$G_1 = 10 \text{ dB} = 10$$

 $F_1 = 3 \text{ dB} = 2$

$$6, = 6 = \frac{1}{4}$$
 $F_2 = 6 = 4$

$$G_3 = 20 = 100$$

 $F_3 = 10 = 10$

$$F = f_1 + \frac{f_2 - 1}{G_1} + \frac{F_3 - 1}{G_1 G_2}$$

$$= 2 + \frac{4 - 1}{10} + \frac{10 - 1}{10 \cdot 4}$$

$$= 2 + 0 \cdot 3 + 3 \cdot 6$$

$$= 5.7 \approx 843$$