Diversity

Exercise 1: Which of these might lead to a reduction in system efficiency by requiring more time or bandwidth? Which of these would require additional or more complex antennas?

ouid require additions	requires more time	requires more bandwidth	requires more hardware
time	Y	<u>۲</u>	N
fre que ry	N	\ \ \ \ \	γ
space	N		Y
po (avizo ho)	H N		Y

Exercise 2: What spacing is required for 10λ separation at 900 MHz?

$$\lambda = \frac{c}{f} = \frac{3 \times 10^8}{9 \times 10^8} = 33 \text{ cm}.$$
 $10 \times 2 \times 3 \text{ m}.$

$$\frac{1+300m}{\text{For concellation (null)}}$$

$$\frac{1}{\text{RX}}$$

$$300m = \frac{2}{3} \cdot N$$

$$360m = \frac{7}{3} \cdot n$$
 $N = 1,3,5...$

$$300 = \frac{c}{zf}n$$

$$300 = \frac{2}{2f}n$$

 $f = \frac{C}{2.300}n = \frac{3 \times 10^8}{2.3 \times 10^2}n = 0.5 \times 10^6 n$ for $n \text{ odd}$

$$f = \frac{3 \times 10^{2}}{2.3 \times 10^{2}}$$
 $f = 0.5, 1.5, 2.5, ... MHz \Rightarrow every$

1. $f = 0.5, 1.5, 2.5, ... MHz \Rightarrow every$

Exercise 4: Would time diversity be more or less effective as the receiver's speed increased? What would happen if the receiver was stopped (such as a traffic light)?

Exercise 5: What type of diversity would you expect to be implemented in an (inexpensive) WLAN card? In a cellular base station?