PN Sequences and Scramblers

Exercise 1: How many bits are there in an m-sequence for m = 6? How many are 1's? How many are 0's?

period =
$$26 - 1 = 63$$
 31 0's

Exercise 2: If the initial value of each flip-flop is 1, what are the values of the next 4 bits output by the right-most flip-flop?

1111	1
0111	1
0011	1
0001	1
1000	
0100	

Exercise 3: How many flip-flops would be required to generate a ML PRBS of period 8191? How many ones would the sequence have? What is the longest sequence of 0's?

at is the longest sequence of 0's?

$$2^{k}-1 = 8191$$
 $2^{k} = 8192$
 $k = 13$
 4095
 $1's$
 $m-1 = 12$

Exercise 4: Why not?

Exercise 5: In the diagram above, what two signals would the receiver compare to detect errors?

Exercise 6: Derive H_2 and H_4 . Show that the first two rows and last two columns of each matrix are orthogonal.

$$\begin{array}{c} \text{H}_{2} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \\ \text{H}_{2} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \\ \text{H}_{3} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \\ \text{H}_{4} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \\ \text{H}_{5} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \\ \text{H}_{7} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \\ \text{H}_{8} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \\ \text{H}_{1} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \\ \text{H}_{1} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \\ \text{H}_{2} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \\ \text{H}_{3} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \\ \text{H}_{4} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \\ \text{H}_{1} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \\ \text{H}_{1} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \\ \text{H}_{1} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \\ \text{H}_{2} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \\ \text{H}_{3} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \\ \text{H}_{1} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \\ \text{H}_{2} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \\ \text{H}_{3} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \\ \text{H}_{1} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \\ \text{H}_{2} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \\ \text{H}_{3} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \\ \text{H}_{1} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \\ \text{H}_{2} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \\ \text{H}_{3} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \\ \text{H}_{4} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \\ \text{H}_{1} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \\ \text{H}_{1} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \\ \text{H}_{2} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \\ \text{H}_{3} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \\ \text{H}_{4} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \\ \text{H}_{1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \\ \text{H}_{1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \\ \text{H}_{2} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \\ \text{H}_{3} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \\ \text{H}_{4} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \\ \text{H}_{1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \\ \text{H}_{2} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \\ \text{H}_{3} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \\ \text{H}_{4} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \\ \text{H}_{1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \\ \text{H}_{2} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \\ \text{H}_{3} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \\ \text{H}_{4} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \\ \text{H}_{5} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \\ \text{H}_{1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \\ \text{H}_{2} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \\ \text{H}_{3} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \\ \text{H}_{4} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \\ \text{H}_{1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \\ \text{H}_{2} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \\ \text{H}_{3} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \\ \text{H}_{4} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \\ \text{H}_{1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \\ \text{H}_{2} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \\ \text{H}_{3} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \\ \text{H}_{4} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \\ \text{H}_{5} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \\ \text{H}_{5}$$

Exercise 7: Show this.