## **Multiple Access and Duplexing**

**Exercise 1**: The GSM TDMA frame duration is approximately 5ms. What frequency would you expect to hear if the GSM RF signal was rectified and output to a speaker?

$$\int = \frac{1}{5m^3} = 200 \text{ Hz (audible)}$$

**Exercise 2**: How much uncertainty is there in the round-trip propagation delay if the distance from a subscriber to a base station can be between 0 and 30km?



**Exercise 3**: In 802.11g/n the delay before transmitting is in multiples of  $9\mu s$ . Assuming the average frame is 140 bytes long and is transmitted at 12 Mb/s, what fraction of the channel time is consumed by a contention delay of 4 slots between frames?

contention delay = 
$$4 \times 9 \mu s = 36 \mu s$$
  
 $4 \text{ ransmission time} = \frac{140 \times 8}{12 \times 10^6} \approx 93 \mu s$   
 $\frac{36}{36+93} = \frac{36}{36493} \approx 28\%$ 

140×8÷12E6=

**Exercise 4**: Two spreading codes,  $s_1 = \{+\sqrt{2}, +\sqrt{2}\}$  and  $s_2 = \{+\sqrt{2}, -\sqrt{2}\}$  are used to separate the signals from two users. Are these codes orthogonal over a period of two chips? Orthonormal? The first user transmits the value +5 and the second user transmit the value -2. Calculate the output of the individual spread signals, the composite CDMA signal and the outputs of the two correlators.

orthogonal means: 
$$\int_{0}^{T} S_{i} S_{j} = k S_{i} j \quad \text{orthonormal: } k=1$$

$$\text{check: } S_{1}.S_{2} = \sqrt{2} \cdot \sqrt{2} + \sqrt{2} \cdot \sqrt{2} = 0 \text{ i. orthogonal}$$

$$S_{2}.S_{1} = \sqrt{2} \cdot \sqrt{2} + \sqrt{2} \cdot \sqrt{2} = 2 \cdot 2 = 4 \quad \text{not orthonormal}$$

$$S_{2}.S_{2} = \sqrt{2} \cdot \sqrt{2} + \sqrt{2} \cdot \sqrt{2} = 42 + 2 = 4$$

5. 
$$(\sqrt{2}, \sqrt{2})$$
  $\Rightarrow$   $5\sqrt{2}$ ,  $5\sqrt{2}$ 

$$-2(\sqrt{2}, -\sqrt{2})$$
  $\Rightarrow$   $-2\sqrt{2}$ ,  $2\sqrt{2}$ 

$$-2(\sqrt{2}, -\sqrt{2})$$
  $\Rightarrow$   $-2\sqrt{2}$ 

$$+ 2\sqrt{2}$$

receiver 1 correlates with  $S_1$ :  $3\sqrt{2}$ ,  $\sqrt{2}$  +  $7\sqrt{2}$ .  $\sqrt{2}$  to set:  $3\cdot 2 + 7\cdot 2 = 6 + 14 = 20$ 

receiver 2 correlates with Sq: 3 vz. V2 + 7 vz. - V2 to get: = 6 - 14 = -8

normalizeby | Si | =4 to recover:  $\frac{20}{4} = 5$ ,  $-\frac{8}{4} = -2$ 

**Exercise 5**: Is a cellular phone call half-duplex, full-duplex or simplex? How about a radio broadcast? A typical taxi dispatch radio?

phone colls -> full dupley

modio broadcost -> simplex

dispoted -> holf duplex