RF Design - IP3

Exercise 1: If the two input frequencies are 150 and 155 MHZ, what are the frequencies of the third-order products? If these two frequencies represent the lower and upper frequencies of a channel, what is the channel bandwidth? Where would the third-order products fall relative to the adjacent channel?

roducts fall relative to the adjacent channel?

$$2\omega_1 - \omega_2 = 2 \cdot 150 - 155 = 300 - 155 = 145$$
 $2\omega_2 - \omega_1 = 2 \cdot 155 - 150 = 310 - 150 = 160$
 $band width = 155 - 150 = 5 MHz$
 $145 & 160$ are at edge of adjacent channels:

 $2\omega_1 - \omega_2 = 2 \cdot 155 - 150 = 5 MHz$
 $2\omega_1 - \omega_2 = 2 \cdot 155 - 150 = 5 MHz$
 $2\omega_1 - \omega_2 = 2 \cdot 155 - 150 = 5 MHz$
 $2\omega_1 - \omega_2 = 2 \cdot 155 - 150 = 5 MHz$
 $2\omega_1 - \omega_2 = 2 \cdot 155 - 150 = 5 MHz$
 $2\omega_1 - \omega_2 = 2 \cdot 155 - 150 = 5 MHz$
 $2\omega_1 - \omega_2 = 2 \cdot 155 - 150 = 160$
 $2\omega_1 - \omega_2 = 2 \cdot 155 - 150 = 160$
 $2\omega_1 - \omega_2 = 2 \cdot 155 - 150 = 160$
 $2\omega_1 - \omega_2 = 2 \cdot 155 - 150 = 160$
 $2\omega_1 - \omega_2 = 2 \cdot 155 - 150 = 160$
 $2\omega_1 - \omega_2 = 2 \cdot 155 - 150 = 160$
 $2\omega_1 - \omega_2 = 2 \cdot 155 - 150 = 160$
 $2\omega_1 - \omega_2 = 2 \cdot 155 - 150 = 160$

Exercise 2: An amplifier has an OIP3 of 30dBm. If it is required that the adjacent channel power be 30dB below the in-channel power, what is the maximum output power we should try to get from this amplifier?

Both Pour decreases by
$$\frac{2}{3}$$

Roof $\frac{2}{3}$

IMD decreases by $\frac{2}{3}$

Pour = $\frac{3}{3}$

Roof $\frac{2}{3}$

IMD decreases by $\frac{2}{3}$

Pour = $\frac{3}{3}$

Roof $\frac{2}{3}$

Roof $\frac{2}{3}$