## **Log-Normal Fading, Link Budgets**

**Exercise 1**: A cellular system is designed so that users on the cell edge have an average SNR of 16 dB. The system requires that users have a minimum SNR of 8dB to place a call. The standard deviation of the log-normal fading is 8dB. What fraction of users at the cell edge will be able to place calls?



$$Pr[z > \gamma] = Q(\frac{\gamma - m}{\sigma}) = \frac{1}{2} \operatorname{erfc}\left(\frac{\gamma - m}{\sqrt{2}\sigma}\right) \qquad m = 16$$

$$= \frac{1}{2} \operatorname{eff}\left(\frac{9 - 16}{\sqrt{2}\sigma}\right) \qquad O \subseteq 8$$

octave:1> 0.5\*erfc((8-16)/(sqrt(2)\*8))

ans = 0.84134 octave:2>

8470 will have SNR > 8dB.

**Exercise 2**: Which of the quantities above will be in dBm and which will be in dB?

- (a) transmitter output power d Bm
- (b) transmit antenna gain dB
- (c) path loss dB
- (d) receive antenna gain dB
- (e) receiver noise power d8~
- (f) link margin dB

**Exercise 3**: Classify the likely origin for each of the values. For example, a physical constant, a system specification, a value chosen by the system designer or a value computed from other lines. Write the equation for each of the computed values in terms of the values of other lines.

|   |                          |        |               | cheek                                            |
|---|--------------------------|--------|---------------|--------------------------------------------------|
| a | transmitter power output | 43     | dBm (20 W)    | -chosen                                          |
| b | transmit antenna gain    | 20     | dB            | - "                                              |
| С | frequency                | 4      | GHZ           | - "                                              |
| e | wavelength               | 7.5    | cm            | - 6/(6)                                          |
| f | path distance            | 42,164 | km            | - c/(c)<br>- constant<br>- from(e) and(f)[Friis] |
| g | free-space path loss     | 197    | dB            |                                                  |
| h | receiver antenna gain    | 45     | dB            | - chosen                                         |
| i | feedline loss            | 1      | dB            | - " = a+b-9+h-i                                  |
| j | received signal power    | -90    | dBm —         | C = a + b - 3                                    |
| k | kT                       | -174   | (dBm/Hz)      | constant                                         |
| 1 | receiver noise bandwidth | 67     | dB-Hz (5 MHz) | _ chosen                                         |
| m | receiver noise figure    | 1      | dB            | - "                                              |
| n | received noise power     | -106   | dBm —         | - = k+1+m                                        |
| m | IF SNR                   | 16     | dB ✓          | -=j-n                                            |
|   |                          |        |               |                                                  |