
ELEX 7660 : Digital System Design
2018 Winter Term

HDL Synthesis Idioms

is lecture describes the common idioms understood by logic synthesizers and how they are converted to circuits.
Aer this lecture you should be able to convert back and forth between digital logic circuits and the corresponding System
Verilog descriptions.

Introduction

Hardware Description Languages are used for both
simulation and synthesis.

Logic synthesizers (such as Synopsys’ Synplicity,
Intel’s Quartus and Xilinx’s Vivado) convert HDL de-
scriptions into circuits (actually, netlists). ey do
this by recognizing a relatively small number of id-
ioms.

In order to be able to generate efficient designs, a
designer must be able to visualize the hardware that
would be generated by an HDL description. is lec-
ture describes some common HDL constructs and
their corresponding hardware implementations.

ere areminor variations between tools which are
described in each tool’s documentation.

Combinational Logic

Although the synthesizer is free to generate any hard-
ware that has the specified functionality, the follow-
ing HDL constructs are typically synthesized as fol-
lows:

• logical operators are converted to the equivalent
logic gates as you would expect.

• arithmetic and comparison operators are con-
verted to (usually optimized) blocks of combi-
national logic that implement the required op-
eration.

• access to a value in an (unpacked) array is imple-
mented as a read-only memory (ROM). Access
to a packed array is implemented as a connec-
tion to specific bits of a bus.

• ternary operators, if/else and case statements are
converted intomultiplexers; nested as necessary.

• an output to which ‘z’ can be assigned is con-
verted to a tri-state output.

Exercise 1: Using the schematic symbols shown below, con-

vert each of the following System Verilog expressions into a

schematic.

D Qop

addr. data

oe

3:0

7:47:0

y = a ^ b ;

y = a < b ;

y = y+1 ;

y = a[3] ;

y = a[3] ? 4 : a[2] ? 3 : a[1] ? 2 :
a[0] ? 1 : 0;

y = table[x] ;

if (y < b)
y = y+1 ;

else
y = y-1 ;

y = oe ? d : 16'hzzzz ;

Sequential Logic

e following HDL constructs are synthesized as fol-
lows:

• always blocks with sensitivity lists containing
signal edges are converted to flip-flops or regis-
ters. e signals assigned to within the always
block are the register outputs.

lec4.tex 1 2018-02-06 00:54

• combinational logic that computes the values as-
signed to register outputs are used to describe
specialized sequential logic such as counters and
shi registers. e register’s current value is of-
ten used to compute the next value.

Exercise 2: Using the schematic symbols shown above, con-

vert each of the following System Verilog expressions into a

schematic.

always@(posedge clk)
y = a ;

always@(posedge clk)
y[7:0] <= {y[6:0],a} ;

always@(posedge clk)
if (e)

y <= a ;
else

y <= y ;

always@(posedge clk)
if (r)

y <= '0 ;
else

if (e)
y <= y+1'b1 ;

else
y <= y ;

next = (reset || done) ? '0 : cnt+'b1 ;

always@(posedge clk)
if (falling)

mosi <= sr[31] ;

always@(posedge clk)
cnt <= cnt_next ;

// logic [31:0] mem [15:0]
always_ff@(posedge clk) begin

mem[p] <= din ;

// logic [31:0] mem [15:0]
dout = mem[p] ;

p_next = valid && rdy ? p + 1'b1 : p ;

// i, j are logic[4:0]; w, sclk are logic
nxt = w ? 5'd7 : (j==N && sclk) ? i-1 : i ;

readdata = {31'b0,csn} ; // csn is logic

crc = ^ (g&sr) ; // g and sr are logic[31:0]

nxt = ~d[8] ;

Schematics to HDL

It’s also important to be able to write the HDL that
will result in a specific hardware architecture.

Each circuit element is converted into the corre-
sponding HDL construct and named signals are used
to connect them according to the circuit topology.

Exercise 3: Write System Verilog that would generate each of

the following schematics. Include any required signal declara-

tions (using logic).

a

b

a!=b

3

3

x

y

z

d

c

1

3

4
+

A D
c

[0]

[1]

[2]

r

h

g

4
s

clk

16x3 ROM

2-to-4 decoder

D3

D2

D1

D0

2

a

b
c

d

x

oe

1616

oen

a ab

D Q

clk

d q

S

D

R

Q

Q

4

4

4

4

4

s

d

r

q

q_n

clk

2

125
8

0

1
8

+

1
D Q

8

clk

p[i]

q[i] 0

1
0

1
D Q

l h clk

q[i]

D Q

clk

ud

a

b

a<b

a

b

a<b

a

b

a>b

4

12

4
c

0
1

D Q1
+

1
-

0

1
0

1

0

1

ud

clk

4
c

D Q
q[i]d[i]

D Q
q[0]d[0]

D Q

q[N-1]d[N-1]

clk

soutsin

N stages

3

