
ELEX 7660 : Digital System Design
2018 Winter Term

State Machines

This lecture describes how to design state machines and implement them using System Verilog.
After this lecture you should be able to: design a state machine based on an informal description of its operation, document
it using state transition diagrams and tables, and write a synthesizable Verilog description of it.

Introduction

A statemachine1 is a device whose outputs are a func-
tion of previous inputs. A statemachine therefore has
memory. The contents of this memory are called the
“state.”
Devices are often described as state machines. We

will learn to describe state machines and to imple-
ment them using digital logic circuits.

Mealy vs Moore State Machines

We can distinguish two types of state machines. The
outputs of aMoore state machine are only a function
of the current state:

D Q

memory

combinational
 logic

inputs outputs

clock

whereas in the Mealy state machine the output is a
function of the current state and the current inputs:

D Q

memory

inputs outputs

Moore state machines are simpler and have the ad-
vantage that “registered” outputs change only on the
clock edges. This avoids glitches resulting from dif-
ferent propagation delays through the combinational
logic at the output. This is desirable for signals that go
off-chip. However, since the outputs of a Moore state

1An implementable state machine has a finite amount of
memory and is sometimes referred to as a “finite state machine”
(FSM).

machine change only on clock edges they cannot re-
spond as quickly to changes in the input.
Exercise 1: Which signals in the above diagrams indicate the

current state?

Exercise 2: Which outputs are registered? Which outputs

could change whenever the input changes?

Design of State Machines

The following steps can be used to design a Moore
state machine. This initial design may need to be re-
fined by adding or removing states or changing the
transitions conditions until the solutionmeets the re-
quirements.

Step 1 - Inputs and Outputs

The first step is to accurately identify the inputs and
outputs. This is important because the rest of the de-
sign effort will be wasted if necessary inputs or out-
puts are not included in the design.
The outputs will generally be specified in the re-

quirements. You should ensure the selected inputs
are sufficient to provide the desired behaviour.

Step 2 - States

The second step is to identify a sufficient number of
states.
Since the output of aMoore statemachine depends

only on the previous inputs we could – in theory – use
a shift register to store previous inputs and use com-
binational logic to compute the current output from
the contents of the shift register. However, in most
cases it’s possible to use a much more concise repre-
sentation of the states.
One approach is to begin by listing all the required

combinations of the outputs. For a Moore state ma-
chine that has only registered outputs each of these
will correspond to a state.
Exercise 3: Why?

lec2.tex 1 2018-01-16 11:43

Step 3 - State Transitions

The final step is to define the behaviour of the state
machine by defining:

(i) the possible state transitions, and

(ii) the input condition(s) required for each of these
transitions.

These will depend on the specifications of the state
machine.
In the process of defining the transition conditions

you may find that it’s not possible to unambiguously
determine the next output based solely on the current
output and the input. This implies that there are state
variables that are do not appear in the output.
In this case you must add “hidden” states (two or

more states with the same output) that allow the re-
quired state transitions to be made unambiguously.

State Machine Descriptions

State machine are typically documented as a state-
transition table or a state-transition diagram.
A state transitions table has columns for the initial

state, the input condition(s), and the next state. The
output corresponding to each different state (and in-
puts for Mealy state machine) can also be listed in the
same or a different table.
A state machine with a small number of states can

be described using a state transition (or “bubble”) di-
agram. Each circle represents a different state and ar-
rows represent the state transitions. Each transition
is labelled with the input required for that transition
and each state is labelled with a state name and, for a
Moore state machine, the output for that state.
State machine descriptions often omit input con-

ditions that don’t result in a change of state and use X
to indicate “don’t care” values.

Implementation

State Encodings

In many cases we can use the outputs themselves as
state variables. This has the advantage that no ad-
ditional flip-flops are necessary to obtain registered
outputs.

We can also use k flip-flops to represent k states
(e.g. 3 flip-flops can encode up to 8 states).
FPGA designs often use “one-hot” encodings

where one flip-flop is used for each state and only
one flip-flop at a time may set to 1. This encoding
requires more flip-flops but can simplify the combi-
national logic.
Exercise 4: If we used 8-bits of state information, how many

states could be represented? What if we used 8 bits of state

but used a “one-hot” encoding?

State Transition and Output Logic

The state transitions are implemented as combina-
tional logic that computes the next state based on the
current state and the input. In Verilog this is usually
done using nested case and/or if/else statements in an
always_comb procedural block.
If some outputs are not represented by state vari-

ables then it’s necessary to add combinational logic
to compute these outputs based on the state and, in
the case of a Mealy state machine, the inputs.
A practical circuit also needs a clock signal and a

reset input. The FSM will change state on every ris-
ing edge of the clock and revert to a starting state
when the reset input is asserted. Often the reset is
synchronous – it is simply another input and the cir-
cuit transitions unconditionally to the required state
on the next rising edge of the clock.

Interacting State Machines

In practice, most systems will be composed of multi-
ple state machines interacting with each other. For
example, a multi-digit counter may be designed as
a combination of individual single-digit counters
each of which is designed as a state machine with a
terminal-count output and a count-enable input.
Exercise5: The linkbelowdescribes agame. List the top-level

game states. Decompose each of these into multiple states.

Repeat.

Simon Game

Examples

Counter

In this example the state is the counter output. The
state transition table, the System Verilog model and

2

https://www.youtube.com/watch?v=1Yqj76Q4jJ4

simulation waveforms for a 2-bit counter with reset
and enable inputs are shown below.

next
count count

[1] [0] reset enable [1] [0]
0 0 0 1 0 1
0 1 0 1 1 0
1 0 0 1 1 1
1 1 0 1 0 0
a b 0 0 a b
X X 1 X 0 0

// 2-bit counter with enable and
// synchronous reset

module ex22 (output logic [1:0] count,
input logic enable, reset, clk) ;

logic [1:0] count_next ;

// next-state logic
always_comb begin

if (reset)
count_next = 2'b00 ;

else if (~enable)
count_next = count ;

else
case(count)
2'b00: count_next = 2'b01 ;
2'b01: count_next = 2'b10 ;
2'b10: count_next = 2'b11 ;

default: count_next = 2'b00 ;
endcase

end

// register
always_ff@(posedge clk)
count <= count_next ;

endmodule

0 1 us 2 us 3 us 4 us 5 us 6 us

xx 00 01 10 11

00 01 10 11 00

clk=1

count[1:0]=11

count_next[1:0]=00

enable=1

reset=0

Exercise 6: What happens if both reset and enable are as-

serted?

Exercise 7: Draw the state transition diagram.

Exercise 8: Rewrite the state transition table and the module

using n and n+1.

Sequence Detector

This type of statemachine is used to detect a sequence
of values such as the correct combination entered into
a digital lock. In this case the single-bit “unlocked”
output is not enough state to determine if the correct
sequence has been input.
This implementation uses a shift register to store

past inputs and combinational logic to detect the re-
quired pattern (1,2,3,4 in this example) in the input.
The output is registered and will be high for one

clock periodwhen the correct sequence is recognized.
A practical digital lock would change state only when
a key is pressed (or released) rather than on every
clock edge.

// digit-sequence detector

module ex24 (output logic unlock,
input logic [3:0] digit,
input logic clk) ;

logic [3:0] digits[4], digits_next[4];
logic unlock_next ;

// next-state logic
always_comb begin

for (int i=0 ; i<3 ; i++)
digits_next[i] = digits[i+1] ;

digits_next[3] = digit ;

unlock_next = digits_next ==
'{ 4'd1, 4'd2, 4'd3, 4'd4 } ;

end

// register
always_ff@(posedge clk) begin

digits <= digits_next ;
unlock <= unlock_next ;

end

endmodule

0 1 us 2 us 3 us 4 us 5 us 6 us 7 us 8 us

x 5 1 2 3 4 2

clk=0

digit[3:0]=2

unlock=0

3

Traffic Lights

This is an example that combines two state machines:
one to sequence the traffic lights at an intersection
and one to implement delays. The states are encoded
as the on/off values of the (Red, Green, Yellow) lights
in each direction:

R

Y

G

R

Y GR

R

Y

G

R

GR GY

state RG state RY

G

Y

R

G

GY GR

state GR

R

R

G

Y

GY GR

state YR

A package is used to define an enumerated type to la-
bel the four states (rg, ry, gr, and gy) according to
the signal colors in the two directions:

package ex28pkg ;

typedef enum logic [5:0]
// RYG RYG

{ rg=6'b100_001, ry=6'b100_010,
gr=6'b001_100, yr=6'b010_100 }

lightstate ;

endpackage

Delays are implemented by decrementing a counter
on each clock edge. When the counter reaches zero
the state changes and the counter is loaded with the
duration of the next state.
The state transition diagram showing the duration of
each state is:

rg

gr

ryyr

30s

30s 5s

5s

The simulation outputs (with the lights shown in
octal) are shown below:

0 10 us 20 us 30 us 40 us 50 us 60 us 70 us 80 us

42 14 24 41 42 14

clk=0

lights[5:0]=14

The module definition is given below. The state
and counter values are given initial values. On some
technologies, these are the values when a device is
powered up.

// traffic light controller

import ex28pkg::* ;

module ex26 (output lightstate lights,
input logic clk) ;

lightstate state=rg, state_next ;
logic [4:0] count=0, count_next ;

// combinational logic
always_comb begin

// next traffic light state
state_next = state ;
if (! count)
case (state)
rg: state_next = ry ;
ry: state_next = gr ;
gr: state_next = yr ;
yr: state_next = rg ;

endcase

// duration of next state (-1)
if (! count)
if (state == rg || state == gr)
count_next = 4 ;

else
count_next = 29 ;

else
count_next = count-1 ;

end

// registers
always_ff@(posedge clk) begin

count <= count_next ;
state <= state_next ;

end

// output
assign lights = state ;

endmodule

Exercise 9: Write the state transition table for each state ma-

chine.

4

