
ELEX 7660 : Digital System Design
2017 Winter Term

State Machine Design

Aer this lecture you should be able to:

• design a state machine from an informal description of its operation, and

• write a Verilog description of a state machine.

Introduction

Oen the clearest and most concise way to describe a
system is as a state machine1. us it’s important to
understand how to model real-world systems as state
machines and implement them using digital logic cir-
cuits.

A state machine is one whose outputs are a func-
tion of the current as well as previous inputs. us a
state machine has memory. e current contents of
this memory are the current state.

Since implementable state machines have a finite
number of states (e.g. finite register widths) a state
machine is sometimes referred to as “finite state ma-
chine” (FSM).

Mealy vs Moore State Machines

In digital logic design we oen distinguish between
two types of statemachines. In aMoore statemachine
the output is only a function of the current state:

D Q

memory

combinational
 logic

inputs
outputs

and oen the outputs are themselves the state vari-
ables:

D Q

memory

combinational
 logic

inputs
outputs

1is is true even when the implementation is done in so-
ware

whereas in the Mealy state machine the output is a
function of the current state and the current inputs:

D Q

memory

inputs outputs

Moore state machines are simpler and are oen pre-
ferred because registered outputs change only on
the clock edges. ese “registered” outputs prevent
glitches appearing on the outputs due to different
propagation delays at inputs to combination logic cir-
cuits. However, since their outputs only change on
clock edges Moore state machines cannot respond as
quickly to changes in the input.
Exercise 1: Which signal in the above diagrams indicates the

current state?

Although in theory every flip-flop is potentially a
state variable, in practice the number of states is lim-
ited – a state machine with a dozen states would be
considered large – and only a few flip-flops are used
as actual state variables.

In theory the output of statemachine depends only
on the current and previous inputs. So the canonical
state machine consists of a shi register that stores
all previous inputs and a combinational logic func-
tion that computes the current output from these. Al-
though in some cases (e.g. sequence detector), this
is a feasible implementation, in most cases the state
variables are a more abstract and concise representa-
tion of past inputs (e.g. most recent input event, input
event counts, etc).

e job of the designer is to choose specific state
variables that result in an efficient (speed, area) de-
sign with, of course, correct behaviour. is requires
a complete understanding of the requirements and
the available implementation technology.

lec9.tex 1 2017-03-21 12:05

Hierarchical State Machines

enumber of possible states increases exponentially
with the number of state variables so it becomes im-
practical to design digital systems as one single state
machine. In practice, most systems will be com-
posed of multiple state machines that interact with
each other. For example, a state machinemay depend
on the value of a counter but the counter itself can be
designed as a separate state machine.
Exercise 2: The link below shows a game. List the top-level

game states. Decompose each of these into multiple states.

Repeat.

Simon Game

Documentation

State Machines are defined by the states, the state
transition rules and the outputs (a function of state
only or state and input).

A statemachine can be documented by listing each
of these in one or more tables. For example a ta-
ble showing the state transitions rules would have
columns for the starting state, input condition(s), and
next state. e output table can have columns for the
state, inputs (for Mealy state machines) and outputs.

A common way to document a state machine is to
use a diagram (graph) in which each state is repre-
sented by a circle (node) and arrows (directed edges)
represent the possible state transitions. Each edge is
labelled with the corresponding state transition con-
dition and each node is labelled with a state name and
sometimes the output for that state.

ere are many conventions for drawing these dia-
grams. For clarity the diagrams below oen omit cer-
tain details, particularly input conditions that result
in no change of state.

Design of State Machines

Students oen find it difficult to come up with a set of
states and the state transitions conditions when faced
with a state machine design problem. e steps given
below can help you come up with an initial design for
a Moore state machine. An initial design oen needs
to be refined by adding/removing states or changing
the transitions conditions until the solutionmeets re-
quirements.

Step 1 - Inputs and Outputs

e first step is to accurately identify the inputs and
outputs. is is important because the rest of the de-
sign effort will be wasted if necessary inputs or out-
puts are not included in the design.

Step 2 - States

As a first approximation, list all possible combina-
tions of output values. For a Moore state machine
each of these will correspond to a state.

Step 3 - State Transitions

Use the description of the machine’s behaviour to
come up with: (i) the required state transitions, and
(ii) the input condition(s) required for each of these
transitions.

Step 4 - Add States

In the process of defining the transition conditions
you’ll oen find that it’s not always possible to deter-
mine the next state based solely on the current state
and the input. In this case youmust split up the start-
ing state into multiple states and rewrite the relevant
transition conditions. ese additional states will re-
quire additional flip-flops which are not outputs.

Implementation

State Encodings

ere are various ways in which flip-flop values can
be used to represent states.

In many cases we can use the outputs themselves
as state variables. is has the advantage that no ad-
ditional flip-flops are necessary to obtain registered
outputs.

Another method is to use k flip-flops to represent
k possible states (e.g. 3 flip-flops can encode up to
8 states) and use an arbitrary mapping from states
to combinations of flip-flop values. For example we
could assign arbitrary numbers to the states and use
their binary encodings as the values of the k flip-flops.

An alternative encoding that is oen used with FP-
GAs is a “one-hot” encoding. In this encoding one
flip-flop is used for each state and only one flip-flop
at a time is set to 1. Variants of this type of encod-
ing include “one-cold” (where only one flip-flop is 0)

2

https://www.youtube.com/watch?v=1Yqj76Q4jJ4

and “almost one-hot” (where there is also a state, typ-
ically the reset state, where all flip-flops are 0). e
advantage of these encodings that it is not necessary
to decode a binary value to determine the state.
Exercise 3: If we used 8-bits of state information, how many

states could be represented? What if we used 8 bits of state

but used a “one-hot encoding”?

State Transition and Output Logic

e state transitions are implemented as combina-
tional logic that computes the next state based on the
current state and the input. In Verilog this is usu-
ally done using nested case and/or if/else statements
to select the current state and input conditions in an
always_comb procedural block.

If the state variables don’t represent the all of the
outputs it’s necessary to add combinational logic to
compute the outputs based on the state and (in the
case of a Mealy state machine) the inputs.

Of course, a practical circuit also needs clock and
reset inputs. e FSM will change state on every ris-
ing edge of the clock and revert to a starting state
when the reset input is asserted.

Examples

is section gives examples of some state machines
that are commonly used to practice state machine de-
sign. Each one demonstrates principles that can be
applied to other problems.

Alarm

is simple state machine has two states: on (alarm
sounding) and off (alarm not sounding). e inputs
are sensors. When a sensor input is asserted the ma-
chine switches to the ‘on’ state and remains there re-
gardless of any changes on the sensor inputs.
Exercise 4: Draw the state transition diagram.

Of course, more complex designs can have alarm
timeouts, keypads to arm/disarm the alarm, modes
where some (e.g. indoor) sensors are disabled, etc.

is type of state machine is oen used to “latch”
(remember) transient inputs.

Traffic Light Controller

is state machine has three states: Red, Yellow and
Green corresponding to the possible colors of the
traffic light. e state transitions are controlled by
timers.
Exercise 5: Draw the state transition diagram. Make a table

showing thepossible output values. What type of state encod-

ing would be most appropriate?

More complex designs can have additional inputs
(e.g. vehicle sensors, pedestrian push-buttons, and
different cycles for different times of the day).

is state machine demonstrates one-hot encod-
ings and the use of a second state machine (timer) to
control state transitions.

Counter

Acounter is a statemachine that is oenused to count
input events. It is oen used together with other state
machines. When the events are clock cycles a counter
becomes a timer.

Counters sometimes use a Gray coded encoding in
which only one bit changes when moving from one
state to the next.
Exercise 6: Write the output encodings for a 2-bit Gray-coded

counter.

Although counters and timers are not typically de-
signed as state machines, they are found in most de-
signs.

Sequence Detector

is type of statemachine is used to detect a sequence
of values in an input. For example, a sequence of bits
in a packet preamble or a sequence of keypresses in a
digital lock.

A simple implementation involves a shi register
with parallel outputs. e input is connected to the
input of the shi register and a combinational logic
circuits is connected to the register outputs and de-
tects the required pattern(s).

An edge detectors is a common type of sequence
detector that detects an input sequence consisting of
a low followed by a high (or vice-versa).
Exercise 7: A state machine has two inputs (A and B) with

overlapping pulses. Design a statemachine that detects when

the rising edge of A happens before the rising edge of B.

Sequence detectors are an example where the
canonical statemachine implementation (remember-

3

ing N previous inputs) is a good approach. is is a
general way to design statemachines although the de-
sign of the combinational logic can become complex
when the number of patterns to be detected is large.
Exercise 8: Which of the above state machines could you use

in your project?

Example: Resetable 2-bit Counter

A resetable 2-bit counter has one input (reset) and
two one-bit outputs. ere are four valid combina-
tions of the outputs (00, 01, 10 and 11) and thus (at
least) four states. e transition conditions are to go
from one count to the next higher count if the reset
input is not active, otherwise go to the zero state.

If we use the variables R as the reset, Q0 and Q1
to represent the outputs, and Q0’ and Q1’ as the next
output, the state transition table would be as follows:

Q1 Q0 R Q1’ Q0’
0 0 0 0 1
0 1 0 1 0
1 0 0 1 1
1 1 0 0 0
X X 1 0 0

where ‘X’ is used to represent all possible values (oen
called a “don’t care”).

In this case no additional state variables are re-
quired since each state transition is uniquely defined
by the current state and the input.
Exercise 9: Write the tabular description of a resetable 2-bit

counter with demultiplexed outputs (only one of the four out-

puts is true at any time). You can assume the counter will al-

ways be reset before being used. How does this counter com-

pare to the previous one in terms of number of flip-flops and

the complexity of the combinational logic?

Exercise 10: Draw the state transition diagram.

4

