
ELEX 7660 : Digital System Design
2017 Winter Term

RTL Design

is lecture describes the most common hardware design method: register transfer level (RTL) design.
Aer this lecture you should be able to: compute setup and hold times from clock period and min/max propagation delays;
determine the level of a circuit design; select an appropriate design level; convert an algorithm into an RTL design described
in synthesizable Verilog.

Synchronous Design

A synchronous logic circuit is one where all flip-flops
and registers use the same clock signal. e clock
does not pass through gates (e.g. it’s not disabled or
“gated”) and is not generated by other logic circuits
(e.g. as in a ripple counter).

Practically all digital design today is synchronous.
e use of a common clock means that all paths be-
tween flip-flops have the following structure:

D Q D Q

clock

combinational
 logic

is makes it practical for EDA (Electronic Design
Automation) tools to determine the maximum clock
rate. For the setup and hold time requirements to be
met the clock period must be greater than the max-
imum propagation delay through the combinational
logic plus the required flip-flop setup time:

t
CLOCK

Q

D

t
PD

t
SU

t
HOLD

t
CLOCK

e amount by which this requirement is exceeded is
known as the “slack” time.
Exercise 1: Mark the slack time in the diagram above.

Exercise 2: If the clock period (tCLOCK) is known, how are the

minimum setup (tSU) and hold (tHOLD) times related to themin-

imum and maximum propagation delays (tPD)?

Levels of Design

Digital logic circuits can be designed at various levels
of abstraction.

At the lowest level, structural, we specify circuit el-
ements such as registers, adders, etc. and how they
are to be interconnected. is is oen done with
schematic capture but can also be done with an HDL.
For example, using Verilog we can instantiate mod-
ules that represent components from a library and
connect their ports using named signals.

At a higher level of abstraction, behavioral, we
specify the desired behaviour in the form of variables,
expressions and procedures and allow the logic syn-
thesizer to select the required circuit elements and
how they are to be connected.

A behavioral design can include a clock and specify
the operations performed on each clock cycle. is is
called Register Transfer Level (RTL) design. is is
the most common approach used today and the one
we will cover in this course.

We can also specify a behavioral model without
a clock. e synthesizer must then decide how to
schedule the steps of the algorithm. For example
whether the operations in a particular loop should
be done sequentially or if the loop should be “un-
rolled” and its operations done in parallel. e de-
signer may provide “hints” to the synthesizer to help
achieve the required design objectives. is level of
design is called High Level Synthesis (HLS) and the
language used is oen C or C++. e following di-
agram summarizes the different levels at which we
commonly design digital circuits:

structural behavioural

RTL HLS

logic design

lec2.tex 1 2017-01-17 07:53

Exercise 3: Which of these requires the most time and effort?

Least? Which gives the designer most control over the cost

and performance of the design? Least? Which produce(s) de-

signs that are portable to different implementation technolo-

gies (FPGAs, ASICs)? Which allow the same design to meet a

variety of speed/area targets?

Sequential Logic

Sequential logic circuits have outputs that are a func-
tion of previous inputs as well as current inputs. ey
are thus said to have “memory.”

In principle, any sequential logic circuit can be
built from a shi register that stores previous inputs
and a lookup table (combinational logic) that com-
putes the output based on these previous inputs:

input D Q D Q D Q...

clock

outputcombinational
 logic

In some cases, such as a sequence detector, this di-
rect form is useful. For example, the following circuit
detects a rising edge on the input signal:

D Q

clk

input rising
edge

Exercise 4: How would you design a falling-edge detector?

For how many clock cycles is the detector output true?

However, in most cases we can greatly simplify the
implementation by storing only a summary of previ-
ous inputs. For example, we could store a count of
the number of times a particular input condition oc-
curred rather than the previous inputs themselves.

Algorithmic State Machines

Certain sequential logic circuits are most conve-
niently described as finite statemachines. At any time
a state machine (SM) can be in only one state. Inputs
can cause the SM to move from one state to another
depending on the current state and the state transi-
tion rules.

In principle any sequential logic circuit could be
described as a single state machine, with its state be-
ing the contents of all of its registers.

In practice, the design of complex digital circuits is
partitioned into relatively simple state machines that
control the operations of other logic circuits, includ-
ing registers that are considered to store data rather
than “state.” ese types of state machines are some-
times called “Algorithmic” State Machines (ASMs).

State Machine Design

Since we are designing state machines to implement
algorithms, our starting point is the algorithm. ese
can be described as executable code (e.g. a C pro-
gram), pseudo-code or a flowchart.

Here’s the pseudo-code for an algorithm to find the
smallest value in an array of 100 3-digit values:

min=999
for (i=0 ; i<100 ; i++) begin

if (x[i] < min) min = x[i]
end
stop

One difference between an algorithmic description
for a computer program and that for a hardware im-
plementation is that hardware can operate in parallel.
All operations that do not depend on the result of a
previous operation can be carried out simultaneously.

In this example, the two initializations (min=999
and i=0) can be done in parallel as can the possible
assignment to min and incrementing of i (min=x[i]
and i++).

Another difference is that branching (state transi-
tions) can be carried out at the same time as other
computations and do not require a separate state.

To design the state machine we define one state for
each group of operations that need be carried out.
e state transition conditions are defined by the se-
quence of operations required to implement the algo-
rithm.

In this case we have three states (e.g. init, test
and done). e transition from init to test is un-
conditional while the transition from test to done
is defined by the condition !(i<100).

e condition x[i]<min does not control a state
transition but instead controls the operation of the
datapath that computes the value of min which can

2

be loaded with 999, min or x[i]. is is a “Mealy”
output of the state machine because its value depends
on an input (the comparison result) and not solely on
the state.

A diagram that includes the state transitions as well
as the operations of the datapath is called an ASM
chart. For this algorithm it might look as follows:1:

min=999
i=0

i++

min=x[i]

x[i]<min

init

test

done

i<100

Datapath Design

edatapath consists of one register for each variable
required by the algorithm. e combinational logic
driving each of these registers is the same: a multi-
plexer that selects one of various combinational logic
functions depending on the outputs of the state ma-
chine.

D Q

state
clk

e algorithm above requires two registers, min
and i. e multiplexer at the input of the min reg-
ister would select the constant 999, min or x[i]. e
multiplexer for iwould select 0, i+1 or i (in the done
state).

Verilog Implementation

e ASM can be described in Verilog using
always_ff block(s) for the state and datapath

1Don’t worry about the details, we won’t use them in this
course.

registers. An enumerated variable allows the use of
symbolic names for the states.

e combinational logic that defines the next
state and the next register values is defined in
always_comb block(s).

e code (for a 4-element array) is shown below.
Simulation results are shown in Figure 1 and the syn-
thesized circuit in Figure 2.

module ex10 (output logic [9:0] min,
input logic reset, clk) ;

logic [9:0] min_next ;
logic [7:0] i, i_next ;

enum logic [1:0] { init, test, done }
state, state_next ;

logic [9:0] x[4] = '{ 700, 800, 30, 900 } ;

// controller state
always_ff@(posedge clk)

if (reset) state <= init ;
else state <= state_next ;

// datapath registers
always_ff@(posedge clk) begin

i <= i_next ;
min <= min_next ;

end

// datapath and next-state logic
always_comb begin

min_next = min ; // defaults
i_next = i ;
state_next = state ;
case(state)

init: begin
min_next = 999 ;
i_next = 0 ;
state_next = test ;

end
test: begin

if (x[i] < min) min_next = x[i] ;
i_next = i+1 ;
if (i_next >= 4) state_next = done;

end
default: ;

endcase
end

endmodule

Note the following:

• signals are defined for both the “_next” next-
state and the current-state values. is gives

3

0 1 us 2 us 3 us 4 us 5 us 6 us 7 us

xx 01 10

xx 00 01 10

xx 00 01 02 03 04

xx 00 01 02 03 04

XXX 999 700 30

XXX 999 700 30

clk

reset

next[1:0]

state[1:0]

i_next[7:0]

i[7:0]

min_next[9:0]

min[9:0]

Figure 1: Simulation results.

Selector0

SEL[2..0]

DATA[2..0]
OUT

WideNor0

Selector1

SEL[2..0]

DATA[2..0]
OUT

Selector2

SEL[2..0]

DATA[2..0]
OUT

Selector3

SEL[2..0]

DATA[2..0]
OUT

Selector10

SEL[2..0]

DATA[2..0]
OUT

Selector4

SEL[2..0]

DATA[2..0]
OUT

Selector11

SEL[2..0]

DATA[2..0]
OUT

Selector5

SEL[2..0]

DATA[2..0]
OUT

Selector15

SEL[2..0]

DATA[2..0]
OUT

Selector6

SEL[2..0]

DATA[2..0]
OUT

min[9..0]

Selector7

SEL[2..0]

DATA[2..0]
OUT

Selector16

SEL[2..0]

DATA[2..0]
OUT

Selector8

SEL[2..0]

DATA[2..0]
OUT

Selector17

SEL[2..0]

DATA[2..0]
OUT

Selector9

SEL[2..0]

DATA[2..0]
OUT

min[0]~reg[9..0]

D

CLK

SCLR
10'h0

Q

<

LessThan0CIN1'h0

A[9..0]

B[9..0]

OUT
Selector12

SEL[2..0]

DATA[2..0]
OUT

Selector13

SEL[2..0]

DATA[2..0]
OUT+

Add0CIN1'h0

A[7..0]

B[7..0]8'h1

OUT[7..0]

min_next~[9..0]
0

1

state

Add0

Add0

Add0

Add0

Add0

Add0

Add0

Add0

clk

reset

init

test

x

SYNC_RAM

WE
1'h0

ENA1
1'h1

CLR1
1'h0

PORTBWE
1'h0

PORTBENA1
1'h1

PORTBCLR1
1'h0

DATAIN[9..0]
10'h0

WADDR[1..0]
2'h0

RADDR[1..0]

PORTBDATAIN[9..0]
10'h0

PORTBWADDR[1..0]
2'h0

PORTBRADDR[1..0]

PORTBDATAOUT[0]

PORTBDATAOUT[1]

PORTBDATAOUT[2]

PORTBDATAOUT[3]

PORTBDATAOUT[4]

PORTBDATAOUT[5]

PORTBDATAOUT[6]

PORTBDATAOUT[7]

PORTBDATAOUT[8]

PORTBDATAOUT[9]

DATAOUT[9..0]

Selector14

SEL[2..0]

DATA[2..0]
OUT

i[7..0]

D

CLK

SCLR
8'h0

Q

clk

reset

0

1

2

3

4

5

6

7

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

1:0

1:0

...
...

...
...

...
...

...
...

...
...

Figure 2: Schematic.

access to both the input (combinational or
“Mealy”) and output (registered or “Moore”)
values of each register. is is a common idiom
in HDLs.

• default values are assigned at the top of the
always_comb block. is ensures that each sig-
nal is always assigned and that this block gener-
ates combinational logic. Inmany cases this also
simplifies the code.

Exercise 5: Find the following blocks in the schematic: the

min register, the x[] memory block, the i register, the state
state machine.

Exercise6: Eachnumber in the Fibonacci sequence is the sum

of the previous two. Write an algorithm to compute the values

of the sequence that are less than 100 and stop. Ignore the

first two (both 1). What registers are required? What states?

Draw the state transition diagram for the controller. Write the

Verilog code.

4

