
ELEX 7660 : Digital System Design
2017 Winter Term

Metastability and Clock Domain Crossing

Aer this lecture you should be able to compute the effect of input and clock frequency changes on theMTBF and implement
clock domain crossing synchronizers to minimize the probability of a metastable event.

Input Synchronization

Input signals oen control the values loaded into
multiple flip-flops. For example, an input that con-
trols state transitions in a state machine can affect the
values loaded into the flip-flops that hold the encoded
state. When an input changes, differences in propa-
gation delays will cause different parts of the circuit to
see different values at different times. is can result
in behaviour that depends onwhen the input changes
relative to the clock. A circuit that exhibits unpre-
dictable behaviour as a result of the timing of its in-
put(s) is said to have a race condition.

Such problems can be avoided by registering the
inputs using a flip-flop and using the output of this
flip-flop output to drive the rest of the logic. is re-
sults in a delay of up to 1 clock period before the cir-
cuit can respond to the changed input. Usually this is
an acceptable trade-off for improved reliability.
Exercise 1: Draw the schematic of an input synchronizer.

As a general rule, always synchronize (register)
asynchronous inputs.

Metastability

Introduction

e proper operation of a clocked flip-flop depends
on the input being stable for a certain period of time
before the rising edge of the clock (the setup time)
and aer the clock edge (the hold time).

If the setup or hold time requirements are not met
and an input transition happens during a short time
window around the transition of the clock, then the
output level could take a long time to settle to a valid
logic level (longer than tCO, the guaranteed clock-to-
output delay). is is called metastable behaviour or
metastability:

clock

Q

D

setup time
 met

setup time
 not met

metastable
 output

correct
 output

is longer-than-expected delay combined with
different propagation delays through different parts
of the circuit can result in some parts of the circuit
treating the flip-flop output as low and some as high.
is will cause unpredictable, possibly catastrophic,
behaviour.

In the synchronous circuits we have studied thus
far we have been able to prevent metastability by
clocking all flip-flops from the same clock and doing
timing analysis to ensure that the maximum propa-
gation delay of any combinational logic path is less
than the clock period minus the flip-flop setup time
and clock-to-output delay.

However, some inputs will be asynchronous – have
no time relationship – to a circuit’s clock. Examples
include switches or sensors that can change at any
time, and an signal controlled by a different oscilla-
tor. It these cases it is impossible to ensure that the
setup and hold times will be met and this will eventu-
ally lead to metastable behaviour and (likely) incor-
rect behaviour of the device.

It is important to realize that all practical logic cir-
cuits with asynchronous inputs will eventually fail
due to metastability. However, the designer should
try to ensure that these failures happen very infre-
quently (e.g. once per  or  years of operation)
so that other causes of failure predominate.

ComputingMTBF

e average time between metastable outputs (mean
time between failures or ‘MTBF’) is given by the for-
mula:

MTBF =
eCtMET

Cfclkfdata

lec11.tex 1 2017-03-28 00:26

where C and C are constants that depend on the
technology used to build the flip-flop, tmet is the dura-
tion of themetastable output, and fclk and fdata are the
frequencies of the synchronous clock and the asyn-
chronous input respectively.

FPGA manufacturers no longer seem to publish
values for C and C that would allow you to calculate
the MTBF but instead incorporate MTBF calculation
into their timing analyzers.

However, the equation shows that the MTBF is
proportional to the clock and data input periods
and increases exponentially with the duration of the
metastable output.

As a general rule, metastability issues can be ig-
nored for inputs with low average frequencies (e.g.
keypads) but need to be considered when a signal
crosses clock domains – when the launch and latch
clocks are asynchronous – and the frequencies are
10’s of MHz or higher (e.g. high-speed data inter-
faces).

ReducingMetastability Probability

e simplest approach is to slow down the clock since
this provides a longer time for the output of the flip-
flop to reach a stable output value (increases tMET).
Because the MTBF increases exponentially with tMET
a small reduction in clock frequency can be enough to
increase the MTBF to an acceptable value. However,
many cases reducing the clock rate is undesirable.

Another approach is to use flip-flops with shorter
setup and hold times – and correspondingly smaller
C and larger C values. e trade-off is that
such flip-flops typically have higher current con-
sumption. Whenever possible, these “metastable-
hardened” flip-flops should be used on asynchronous
inputs. e flip-flops on FPGA inputs are typically of
this type.

If these approaches do not result in the desired de-
gree of reliability, it is possible to use two (or more)
flip-flops in series. is arrangement is called a syn-
chronizer. Even if the output of the first flip-flop has
not settled to a valid logic level before the setup time
of the second flip-flop, it is unlikely to be at an invalid
level at the rising edge of the second flip-flop. us
all the logic driven by the second flip-flop will see the
same logic level.
Exercise 2: Draw a synchronizer circuit. Does increasing the

clock rate increase or decrease the MTBF?

A synchronizer can still fail if both the first and sec-

ond flip-flops have metastable outputs aer tCO, but
this is much less likely than for a single flip-flop. By
adding additional flip-flops to the synchronizer chain
the probability of a metastable output from the last
flip-flop can be made arbitrarily low. e disadvan-
tage of using a synchronizer is that the input will now
be delayed by additional clock period(s).

Glitches

Glitches are short temporary changes in outputs that
are caused by different propagation delays in a circuit.
ere are two reasons why glitches are undesirable.

e first set of problems is related to noise and
power. Since glitches are short pulses much of their
energy is at high frequencies and this power couples
easily onto adjacent conductors. is induces noise
into other circuits and reduces their noise immu-
nity. Glitches also cause power supply current spikes
which result in voltage transients on the power supply
lines. Another problemwith glitches is that in CMOS
logic families current consumption is proportional to
the number of transistor switchings and glitches lead
to increased current consumption.

e second set of problems arises when the digi-
tal output of one circuit is used as a clock in another
circuit (e.g. to drive a counter or register). In this
case glitches cause undesired clock edges (similar to
switch bounce). In synchronous (single-clock) cir-
cuits these glitches are not a problem.

Glitches can be reduced by modifying the design
of the combinational logic. However, this usually in-
troduces additional logic. Glitches on signals that are
confined to short paths within a circuit or inside a
chip are usually tolerated. However, when outputs
are brought off a chip, board or system (e.g. onto a
bus) it is good practice to eliminate glitches.

e simplest way to eliminate glitches is to use a
registered output signal. e output of a flip-flop
changes only once, on the clock edge, and thus elim-
inates any glitches on its input. ere are two ways
to register outputs. Oen it is possible to use regis-
ter outputs directly such as when an output is already
in a data register or when the signals are state ma-
chine state registers. e second method is to pass
the signal through an additional flip-flop before it is
output. e disadvantage of this method is that the
output will be delayed by up to one clock period.

As a general rule, always register chip outputs.

2

