
ELEX 7660 : Digital System Design
2017 Winter Term

Specifying Timing Constraints

In addition to ensuring that your design produces the correct outputs, you also need to ensure that various timing require-
ments will be met. is lecture describes how to describe these requirements in the form of statements in SDC (Synopsys
Design Constraint) files.
Aer this lecture you should be able to use the SDC constraints described in this lecture to check that your design: (a)
operates at specified clock rate(s), (b) meets the setup and hold time requirements of external IO devices, and (c) operates
with the specified delays of external devices.

Introduction

Ensuring that the timing requirements (“constraints”)
of a design are met is oen as challenging as ensuring
the design is logically correct.

Timing constraints can come from system require-
ments (e.g. a required clock rate resulting from a re-
quired throughput or response time requirements),
or from the timing requirements (e.g. the setup/hold
times) and specifications (e.g. propagation delays) of
other components.

A [static] timing analyzer is a program that ana-
lyzes a netlist that includes propagation delays and
checks that specified timing constraints are met. e
designer’s job is to specify these timing constraints
correctly andmodify the design as necessary until the
constraints are met (usually while also trying to min-
imize costs and meeting deadlines).

ere is a standard file format, Synopsys Design
Constraint (SDC), for specifying timing andother de-
sign constraints although some tools may not include
all commands and sometimes add their own com-
mands. is lecture covers some of the more com-
mon timing constraint and how they are specified in
an SDC file.

Note that adding timing constraints does not
change the architecture of a design. e designer
must understand the speed limitations of the devices
being used and the architecture that results from the
HDL to come up with a design that is likely to meet
the constraints.

Collections

We oen want to set timing constraints on a collec-
tion of signals such as all of the bits in a bus.

When a module is instantiated unique signal

names must be generated to avoid name conflicts.
ese names may be difficult to determine. For ex-
ample the signal name adcspi:a0|cnt.bitcnt[0]
may specify the 0’th bit of the bitcnt field of the cnt
signal of the a0 instance of the adcspimodule.

SDC files can use tcl functions that look up signal
names by matching netlist names with patterns that
can include the an asterisk as a wildcard. For exam-
ple, the [get_nodes *bitcnt[*]would return ref-
erences to the matching signal names, including the
one above.

Different collection get_ functions can search for
different type of signals1: nodes most netlist items,
cells (registers), pins (cell i/o’s), nets (connec-
tions between pins), ports (top-level i/o), clocks
(clock signals – not necessarily in your design). For
example, get_ports a* would return references to
all top-level IO signals matching the pattern “a*.”

e netlist viewer can be used to look up node
names from a generated schematic. Sometimes it’s
useful to get a list of the signal names in a collection.
e following example shows tcl code that does this:

set c [get_ports *]
foreach_in_collection i $c { puts [get_port_info -name $i]}

Clock Constraints

Most designs will use one (or more) clock signals.
ese clocks’ frequencies must be specified in the
SDC file so that the timing analyzer can ensure that
the setup and hold times of flip-flops internal to the
FPGAwill be met. Many designs will also derive new
clock signals either by dividing a clock or by using a
phase-locked loop (PLL).

You can use the following tcl commands in the
SDC file to supply clock constraints. e syntax de-

1From Quartus documentation

lec10.tex 1 2017-04-14 15:15

tails are available in the Quartus SDC editor (right-
click and select Insert Constraint), the TimeQuest
timing analyzer GUI (Constraints...), and the Quar-
tus documentation.

create_clock - this specifies a clock signal. e fre-
quency is specified, it is given a name and it can
be associated with a particular net in the design.
For example:

create_clock -name clk50 -period 20 \
[get_ports {clk50}]

create_generated_clock - can be used to define
clocks with a fixed relationship (frequency
and/or phase) to another clock. For example:

create_generated_clock \
-source [get_ports clk50]\
-divide_by 2 -name sclk_int \
[get_nodes sclk~reg0]

derive_pll_clocks - this command uses PLL instance
parameters to create generated clocks corre-
sponding to the PLL output(s). Most FPGA de-
signs use PLLs to generate clocks and this is of-
ten the only clock constraint required.

derive_clock_uncertainty - this adds the effect of
clock (typically PLL) jitter to the timing analy-
sis. Quartus gives an annoying warning if you
do not use this constraint.

ese constraints are all that are required for sim-
ple designs that do not use clocked I/O (e.g. LEDs
and switches).

IO Timing Constraints

Most other timing constraints (e.g setup and hold
times) are specified relative to clock signals. Many
FPGA designs will therefore include the following
SDC statements:

set_output_delay - this command allows you to
specify the maximum or minimum allowed de-
lay between an output clock and a data output.
Use this to ensure the timing requirements of
other devices will be met. You can use this to
specify the setup (with the -max option) and/or
hold (with -min) requirements of an off-chip
control register or memory.

For example, if an external IC has an 8 ns min-
imum setup time between its mosi data input
and sclk clock inputs and the clock period is
40 ns then the maximum delay from the clock
to the data being valid is −  =  ns:

sclk

mosi mosi

sclk

40

832

sclk

mosi

We could specify this as follows2.

set_output_delay -clock sclk \
-max 32 [get_ports mosi]

set_input_delay - this command allows you to spec-
ify the maximum or minimum delay between a
clock output and a data input. Use this to ensure
your circuit will work correctly given the out-
put timing specifications of other devices. For
example, you can use this to specify the clock-
to-output (access) and propagation delays of an
off-chip status register or memory.

For example if an external IC has an 8 ns de-
lay from its sclk input to its miso output being
valid, we could specify the constraint:

set_input_delay -clock sclk \
-max 8 [get_ports miso]

e following diagram (from a Timing Analyzer
report) shows that the analysis includes the clock
propagation delays to the launch and latching
flip-flops and the external 8 ns delay:

2is ignores propagation delays due to PCB traces. Veloc-
ity of propagation depends on the substrate but will be approxi-
mately c/ or about  cm/ns

2

Different types of I/O interfaces require different
types of timing constraints:

Common-Clock At low clock rates (10’s of MHz) a
common system clock usually supplies timing
for interfaces. An example would be static RAM
and older versions of the PCI bus. In this case
the source clock is typically an input (external
to the FPGA).

Source-Synchronous Source-synchronous in-
terfaces supply a clock along with the data.
Examples include SDRAM and SPI interfaces.
In this case (as above) the source clock is gener-
ated by the FPGA when it’s an interface master
and is an input if the FPGA is an interface slave.

Embedded-Clock At higher rates (GHz) it’s com-
mon to recover the clock from the data. Exam-
ples include USB and recent versions of HDMI.
ese types of interfaces require custom inter-
face hardware (called SERDES – Serializer/De-
serializer) to recover the clock from the data.

Exceptions

ere are various situations that require additional
constraints. See the timing analyzer documentation
for more details.

Asynchronous Clocks

By default all clocks are assumed to be derived from
the samemaster clock and retain the same timing rel-
ative to each other. If two clock are physically inde-
pendent then the timing analysis of circuits driven by
both clocks will be misleading. A typical example is
a design that has an internal clock and a clock sup-
plied by a peripheral. e set_clock_groups (or
set_false_path) commands can be used to per-
form timing analysis on each clock “domain” sepa-
rately.

e setup and timing requirement of flip-flopswith
asynchronous inputs are bound to be violated at some
point. Even though it’s not possible to do timing
analysis on asynchronous signals, it is possible to de-
termine how oen timing violations happen when
signals cross clock “domains” and the consequences.
is will be covered in more detail later.

Multicycles

In some cases the launching and latching clock edges
can be separated by multiple clock cycles. e
set_multicycle_path command can be used to
allow a delay longer than one clock period.

Output Skew

e set_max_skew (Altera-specific) command con-
strains the maximum variation in delay between any
of a group of signals (e.g. bits of a bus). is is also a
simple way to specify timing constraints for source-
synchronous outputs with non-critical timing con-
straints.

Delays

In some cases it’s desirable to specify maximum or
minimum delays without reference to a clock. An ex-
ample would be a maximum propagation delay for a
combinational logic function. e set_max_delay
and set_min_delay commands can do this.

3

