ELEX 7660 : Digital System Design
2017 Winter Term

Introduction to Digital Design with Verilog HDL

This lecture introduces digital logic circuit design using the Verilog Hardware Description Language. It covers many topics

at a superficial level; we will revisit each in more detaill.

After this lecture you should be able to: define a module with single- and multi-bit logic inputs and outputs; write ex-
pressions using Logic variables and operators; use assign statements and always_comb procedural blocks to generate
combinational logic; use always_ff to model D flip-flops; use if and case statements to model multiplexers and ar-
bitrary logic functions; write Verilog numerical constants; implement an algorithm as a register-transfer datapath and
controller; instantiate a module into another module and into a testbench;.

Introduction

Most of the functionality of modern electronics is de-
fined by its software. However, for reasons of speed,
cost or power a digital system may require custom
digital hardware. This course explains how to design
such circuits.

The design process begins by specifying the inter-
faces and how the design will be verified. Solutions
are then iterated until the requirements are met.

Digital circuits are mainly designed using Hard-
ware Description Languages. In this course we
will use Verilog rather than the other popular HDL,
VHDL.

Combinational Logic

Consider the following Verilog description of an
AND gate:

// AND gate in Verilog

module exl ( input logic a, b,
output logic y ) ;

assign y =a & b ;
endmodule

Logic synthesis software (e.g. Altera’s Quartus) can
map this description into the following circuit:

y

a[ >—
b [ '
Verilog includes most C
ing arithmetic (+, -, *, /,

operators  includ-
%), bitwise

lecl.tex

(&, |, =, ~, <<, >>),comparison (>, >=, !=,
etc.), logical (&&, |1, !), array indexing ([]), and
ternary conditional (7:). C syntax is also used for
comments.

Exercise 1: What changes would result in a 3-input OR gate?

Exercise 2: What schematic would you expect if the state-

mentwasassign y =a ? b : c ;?

Registers

The following Verilog:

module ex2 (input logic d, clk,
output logic q) ;

always_ff @(posedge clk) begin
q<=d;
end

endmodule

synthesizes a D-flip-flop that transfers the d input to
the q output on the rising (positive) edge of c1k:

dl >——p
ck[ >——pcik 0@ q

1'ho
—SCLR

Multiplexers and Buses

Verilog’s if statement models a multiplexer. The fol-
lowing example selects one of two 4-bit inputs:

module ex3 (input logic sel,
input logic [3:0] a, b,

2017-01-09 03:58



output logic [3:0] y) ;
always_comb begin
if ((sel ) y <= a ;

else y <= Db ;
end

endmodule

which results in:

sel

b[3..0] [D—
a3..0] [D—

y[3..0]

Arrays model buses. The array declaration spec-
ifies the range of possible index values. Each index
value corresponds to one bit of the bus. Index ranges
are usually specified in decreasing order so that when
buses represent integers the first array element is the
most significant (leftmost) bit. In the example above
a[3] is the most significant bit of the 4-bit signal a.

Exercise 3: What change might produce a 4-bit 4-to-1 multi-
plexer controlled by a 2-bit sel input?

Exercise 4: If the signal i is declared as logic [2:0] 1i;,
what is the ‘width’ of i? If i has the value 6 (decimal), what is

the value of i [2]? Of 1 [0]?

Case Statements and Numeric Constants

A Verilog case statement can model arbitrary combi-
national logic.

The following code describes a 2-input/8-output
ROM memory (or “look-up table”):

module ex4 (input logic [1:0] a,
output logic [7:0] d) ;

always_comb begin

unique case (a)
0: d = 8'hcO ;
1: d = 8'b1111_1001 ;
2: d = 'had ;
3: d =176 ;

endcase

end
endmodule

which synthesizes into:

Decoder0

d[5]~not
0

a0 >

d[6]~not

E O dr.0

Numeric constants in Verilog are written as the
number of bits (default 32), an optional quote (') fol-
lowed by the base (b=binary, x=hex, d=decimal), and
the value. Underscore separators (_) are optional.

Exercise 5: What are the values in decimal of the constants in
the code above?

Exercise 6: What is the output in binary when the input is
a=2'b10 ¢

for-loops and Memory

Verilog’s for-loops replicate combinational logic.
This example:

module ex9 ( input logic [3:0] data [0:3],
output logic [5:0] sum ) ;

always_comb begin
sum = 0 ;
for ( int

sum +=
end

i=0 ; i<4 ; i++ ) begin
datali] ;
end

endmodule

adds the four elements of an array of 4-bit numbers.
However, the resulting circuit:

data[0][3..0] [D—=—
data[1][3..0] [D—=—t

data[2)[3..0] [

sum(5..0]
data[3)[3..0 [~

is not what you may have expected. A C program

would add one element of the array at a time to a sum



variable (register). However, the synthesized circuit

has no registers and generates the result directly.
Memories can be modeled as arrays of multi-bit

registers. The data input above is an example.

Register Transfer Level (RTL) Design

You cannot use C control structures (e.g. for, if/else)
to implement algorithms. Instead, you must define
registers, operations on these registers and a state ma-
chine that generates the correct sequence of these op-
erations.

For example, the following fragment of Verilog im-
plements a register, x, that can be set to 8, incre-
mented or decremented depending on the signals
reset_n and op.

always_ff Q@(posedge clk) begin
if ( ! reset_n )
x <= 4'd8 ;
else
case (op)
incr: x <= x + 4'dl ;
decr: x <= x - 4'dl ;
endcase

end

Additional logic defines the sequence of opera-
tions. In the example below the value of the regis-
ter op switches to incr(ementing) when the value of x
reaches 5 and to decr(ementing) when the value of x
reaches 11.

always_ff Q@(posedge clk)
op <= next ;

always_comb begin

if ( ! reset_n ) next = incr ;

else if ( x == 4'd05 ) next = incr ;

else if ( x == 4'd11 ) next = decr ;

else next = op ;
end

We can combine these two pieces of code, called
the “datapath” and “controller” respectively, into a
Verilog module along with the required i/o and dec-
laration of op and it’s possible values:

module ex5 ( input logic reset_n, clk,
output logic [3:0] x ) ;

enum logic[1:0] { incr, decr } next, op ;

// datapath code goes here
“include "exba.sv"

// controller code goes here
“include "ex5b.sv"

endmodule

This generates the circuit shown in Figure 1.

The controller is a state machine shown as a rect-
angle while the datapath is the multiplexers that load
the register x with 0, x+1 or x-1 on each rising edge
of clk.

More complex algorithms will require more regis-
ters; both in the datapath and to control the sequenc-
ing of the operations.

Exercise 7: Label the x+1 and x-1 buses.

Exercise 8: Draw the state transition diagram for the op reg-
ister.

Hierarchy

Designs are divided into modules to simplify testing
and allow re-use.

A module can instantiate (include) instances
(copies) of other modules. For example, if we had a
7-segment LED display decoder module called ex7
with a 4-bit input (n) and an 8-bit output (seg) we
could combine it with the count-to-5 module (ex5)
to build a display that shows digits counting from 0
to 5:

module ex8 ( input logic reset_n, clk,
output logic [7:0] seg ) ;

logic [3:0] count ;

ex5 ex5_0 ( .*, .x(count) ) ;
ex7 ex7_0 ( .n(count), .seg ) ;

endmodule

The module instantiation syntax allows mapping of
the instantiated module’s port names to signals in the
instantiating module. The synthesized result is:

ex5:ex5_0 ex7:ex7_0

ok D clk; x[3..0] n[3..0] seq[7..0 seg[7..0]
reset_n
reset_n[ _o————="




x[0]~regO

ck [
i U D
1ho ciN Addl bCLK Q —{ x3.0]
A0/, \QuIad] Tholo r
5'h1d B[4..0] ’
op x[1]~regO
Ik 6
reset n[_> reset_n :CLK Q
x[0]~reg0 incr| —L 1'h0| SCLR
X[1]~reg0
x[2]~reg0 X[3]~reg0
x[3]~reg0 4 D
1'h0 cIN  AddO >CLK  Q
A[3..0 OUTI3..0 Tholc i n
4'h1 B[3..0
|
x[2]~reg0
> D
>CLK  Q
L

Figure 1: RTL design example.

Exercise 9: Which ports are mapped by . * in the instantiation
of ex5?

Exercise 10: Write the module declaration for ex7.

Interfaces

A module may not be ready to accept input or its
output may not be valid while it is “running” an al-
gorithm. ready and valid signals can coordinate
transfer of data between such modules:

module1 module2
data_out data_in
valid valid
ready ready
clock ] clock
module1 module2
ready== valid==

Module 1 sets valid when it moves to a state
where data_out is valid. Module 1 transfers out of
this state (and possibly back to the same state) when

the ready input is set. Module 2 sets ready when it
transitions to a state where it canload data_inintoa
register. Module 2 transfers out of this state (and pos-
sibly back to the same state) when the valid input is
set.
Exercise 11:  What is the minimum number of clock cy-
cles required to transfer one data word over an interface with
ready/valid handshaking? Maximum?

A System on a Chip (SoC) includes a processor
(CPU) plus additional logic. These interfaces have
been standardized (e.g. Avalon for Altera FPGAs,
AMBA for ARM processors) to allow re-use of cus-
tom logic (IP or “Intellectual Property”) blocks.

These interfaces can include an address as well as
data. These “memory-mapped” interfaces allow the
CPU to access multiple memory locations or registers
within the module.

Implementation

The process to implement a design using an FPGA
(Field Programmable Gate Array) IC is shown below.



$ Verilog

} netlist
Gt lace&route | | Quartus
P synthesis

delays

ik

assemble
programming file
JTAG ™~
POt TepGA

After the design is mapped to gates and flip-flops it
must be fit into a specific device. Additional informa-
tion the fitter needs to “place and route” the design is
supplied in two files. The . gsf (Quartus settings) file
device contains, among other things, the device type
(part number) and the pin assignments. For example:

set_global_assignment -name DEVICE EP4CE22F17C6
set_location_assignment PIN_A15 -to x[0]

set_location_assignment PIN_E1 -to reset_n

Timing constraints such as clock frequencies and ex-
ternal device setup/hold times are defined in a .sdc
(Synopsis Design Constraint) file. For example, the
following statement requires that the design meet
setup and hold requirements with a 50 MHz (20 ns
period) clock signal called CLOCK_50:

create_clock -period 20ns CLOCK_50

Finally, the placed and routed design is “assem-
bled” to a file that can program the FPGA, typically
over a dedicated “JTAG” programming/diagnostic
interface port on the FPGA.

Timing

Reliable operation requires that the setup and hold
time requirements of all flip-flops in the design be
met. The place and route operation generates a netlist
“annotated” with the delays between flip-flop outputs
and inputs. Timing analysis software subtracts these
delays from the clock period to check for “slack” in
meeting the timing requirements. If negative, then
mapping and/or P&R can be repeated with this addi-
tional information until there is timing “closure”

The timing requirements of off-chip components
such as memories and interface ICs should also be in-
cluded in the timing analysis.

When signals are exchanged between circuits with
independent clocks (“clock domain crossing”) it’s not
possible to ensure that the timing requirements will
be met. This results in a non-zero probability that
the timing requirements will violated and that the cir-
cuit will fail. Various strategies can reduce, but not
eliminate, the likelihood and consequences of such
“metastable” behaviour.

Exercise 12: A circuit’s clock has a period of 20 ns. The prop-
agation delay between flip-flop outputs and inputs is a mini-
mum of 5 ns and maximum of 18 ns. What are the minimum
setup and hold times?

Testbenches and Simulation

A circuit can be tested by simulating its operation. In
this example an executable Verilog module called a
“testbench” applies inputs to the module being tested:

// synthesis translate_off
module ex6 ;

logic clk=0, reset_n=0 ;
logic [3:0] x ;

ex5 ex5_0 (.*);

initial begin
$dumpfile("ex6.vcd");
$dumpvars ;
@(negedge clk) reset_n = 1 ;
repeat (22) @(posedge clk) ;
$finish ;

end

always begin
#500ns clk = ~clk ;
end

endmodule
// synthesis translate_on

This testbench de-asserts the reset signal at the
clocK’s first falling edge and waits 30 clock cycles be-
fore terminating. It also generates a 1 MHz clock.
In this example the waveforms are written to the file
ex6.vcd for viewing. Testbenches can also check the
outputs themselves.

The testbench is not synthesizable because it in-
cludes “system tasks” ($dumpfile and $finish)



| s ls
reset_n

next[L:0] [0 YT o Ul
op[1:0]  [JO0 Jul 00 jul

clk L1 i rrrrrererie e rererre e e rtererere e re e rered
I v VA (S (I )i ) 6 5 ) 5 16 )i )i )4 I Y T

= 4,—,—,—,—\—\—\—‘—‘—‘—|_‘_,_,—’—'—,—,—,—,1

Figure 2: Simulation results.

and delays (#500ns), that cannot be implemented in
hardware. The translate_on/_off “pragmas” in
the comments disable processing of the testbench by
synthesis software.

Figure 2 shows the waveforms written to file
ex6.vcd when the simulation was run.

Exercise 13: Where in the code is the Device Under Test (DUT)
instantiated?

Exercise 14: The simulation results show the values of x rang-
ing from 4 to 12. But the limits in the ex5 code are 5 and 11.
Why?

Other simulators read a file containing “test vec-
tors” — test inputs and the expected outputs. The sim-
ulator compares the module’s simulation output to
the expected values.

Simulations using netlists without delay annota-
tions are called “functional” simulations because they
verify that the design is correct. Simulations that in-
clude delays, called “timing” simulations, verify that
the design will work properly after being placed and
routed and at the specified clock rate.



