ELEX 7660 : Digital System Design
2017 Winter Term

Solutions to Midterm Exam

Question 1

The two versions of this question used the same ex-
pressions arranged in different orders. The following
code computes the size and value of each expression:

// solutions for midterm exam question 1
module midterm ;

logic signed [7:0] a
logic [3:0] b [3:0]

'{ 4'bxxxx, 4'h1, 4'd2, 4'b0011 } ;
logic [3:0] c "1

8'h80 ;

“define ans(expr) \
$display("%16s: bits: %2d value: %8b", \
“texpr",$bits(expr) ,expr) ;

initial begin

“ans(a+l) ;
“ans(b[0] ==7 4'bxxxl) ;
ans(al0] 270 : 2) ;
“ans({2{al7:41}}) ;
“ans(&c)
“ans(a >>> 1) ;
“ans(b[1]) ;
ans(c && a) ;
“ans(b[2]==c) ;
end
endmodule
and the output is:
a+l: bits: 32 value: 1...10000001
b[0] ==7 4'bxxxl: bits: 1 value: 00000001
al0] 7 0 : 2: bits: 32 value: 00000010
{2{al7:4]}}: bits: 8 value: 10001000
&c: bits: 1 value: 00000001
a >>> 1: bits: 8 value: 11000000
b[1]: bits: 4 value: 00000010
c && a: bits: 1 value: 00000001
b[2]==c: bits: 1 value: 00000000
Question 2

(a) There were two versions of the question. In both
the clock signal is initialized to 0 and the simula-
tion runs for four delays of 1 ys (4 us total). There
are two rising clock edges (at 1 and 3 ps).

(b) In the first version of the question x is initialized
to 1 and is incremented by 2 on each rising clock

midtermsol.tex

edge; in the second it is initialized to 0 and in-
cremented by 1. So x takes on three values - the
initial value and one after each clock edge - and
the values of x are 1, 3, 5 (first version) or 0, 1, 2
(second version).

(c) The $display() function in the always_ff
bock executes immediately after a non-blocking
assignment so the value of x will not have been
updated yet. So the first version prints:

1
3

while the second version prints:

0

1
(d) The always_comb block executes and updates y
whenever x changes. The value of y is set to x+1
if the LS bit of x is set (x is odd) else to zero. So in
the first version y is set to (2,4,6); in the second it
is set to (1,0,3) as shown below:

| 1) b b
o=t

I I R —

X3.0]=3]L B k

30 I b

e]

130 I i

J30 0 B

Question 3

To convert a schematic to HDL, we:

o list each input or output in a module statement

o assign to each register or flip-flop output using
a non-blocking assignment in an always_ff

block

2017-03-01 17:47

« model each multiplexer as an if/else in an and for the second schematic:
always_comb block, usinglocal signal names as
necessary

« model combination logic blocks as operators

It’s often possible to simplify the solution using
continuous assign statements or the ternary oper-
ator.

For the first schematic:

o8 —y examples of the System Verilog code are:

aD8
b[}8 module midterm3b
(input logic [7:0] a, b,
L [a output logic [7:0] y,
b a>b input logic s, e, clk);
e[“ifdef simple
ck &

always_ff@(posedge clk)

examples of concise and more verbose System Verilog
y<=e? (s ?ab:ath) :y;

solutions are:

module midterm3a “else
(input 1logic [7:0] a, b,
output logic [7:0] vy, logic [7:0] y_next, y_sumdiff ;

input logic e, clk) ;
always_ff@(posedge clk)

“ifdef simple y <= y_next ;
always_ff@(posedge clk) always_comb
y<=e?y+ (a>»?b:a) :y; if (e)
y_next = y_sumdiff ;
“else else
y_next =y ;

logic [7:0] y_next, y_sum ;
always_comb

always_ff@(posedge clk) if (s)
y <= y_next ; y_sumdiff = a - b ;
else
always_comb y_sumdiff = a + b ;
if (e) “endif
y_next = y_sum ;
else endmodule
y_next =y ;
always_comb Question 4
if (a>b)
ysum = b ; There were two System Verilog modules. Drawing the
else schematic involves drawing:
y_sum = a ;
« an I/O connector for each input or output in the
“endif module statement
endmodule o aregister or flip-flop for each always_£f block

ck[>

a[0]~reg[15..0]

sum[lS..O]

— al15.0]

reset[>
1'ho cin Addl a_next[15..0]
A[15..0 OQUT[15..0 L a[15..0]
[] [] I 16'h0
16'h1 B[15..0
1'h0 cin ~ AddO sum[0]~reg[15..0]
A[15.0] 0UT[15.0] . sum_next[15..0] I_
B[15..0
d[15..0] 16'h0 1 1610
Figure 1: mksum schematic.
ck[>
reset[> a[0]~reg[15..0]
1'h0 cin AddO 1
Al15..0] OUT[15..0] !
16'0.
16'h1 B[15..0
1'h0 cin LessThan0
d[15..0] D A[15..0] ouT mini[0]~reg[15..0]

B[15.0 mini_next~[15..0]

mini_next[15..0]

— > mini[15..0]

16'h0.

Figure 2: mkmini schematic.

« amultiplexer for each if/else or ternary operator

« a combinational logic block for each operator in
an expression

Figure 1 shows the Quartus-generated schematic
for the mksum module and Figure 2 shows the
Quartus-generated schematic for the mkmini mod-
ule.

