
ELEX 7660 : Digital System Design
2017 Winter Term

Assignment 2

Due Monday, March 20. Submit your assignment using the appropriate dropbox on the course web site. Assignments
submitted aer the solutions are made available will be given a mark of zero.

Question 1

BigSemiCo Ltd. has hired you to help with verifica-
tion this summer. Your manager has given you a file,
cordic.v1, with some old-style Verilog code. is
file defines a module, cordic, that can be used to
compute trigonometric functions.

Your manager is thinking of using the module in
an important project where it will be used to com-
pute sines of angles. She wants to know if the module
works properly so she’s asked you to write a testbench
to see how accurate the results are.

e module cordic is defined as follows:

`define XY_BITS 16
`define THETA_BITS 16
`define CORDIC_1 17'd19896 // CORDIC inverse

module cordic (
input wire clk,
input wire rst,
input wire signed [`XY_BITS:0] x_i,
input wire signed [`XY_BITS:0] y_i,
input wire signed [`THETA_BITS:0] theta_i,

output wire signed [`XY_BITS:0] x_o,
output wire signed [`XY_BITS:0] y_o,
output wire signed [`THETA_BITS:0] theta_o

);

By now you can probably figure out the purpose of
clk and rst. As described in the file’s header com-
ments, the module can be used to compute sines by
setting:

y_i = 0;
x_i = `CORDIC_1
theta_i = the input angle

and then aer 16 clock cycles (the pipeline delay) the
output will be:

y_o = sin(theta_i)
1is is in asg2.zip on the course web site and actually

comes from github (via opencores.org and the author’s site).
comes with documentation and a testbench. But for this assign-
ment you must write your own.

e input angle, theta_i, is specified in radians
and valid values are between 0 and π/. e angle
and the input x and y values are in the following fixed-
point format (from the documentation):

... the format U(1,15) where bit 16 is the sign
bit, bit 15 is the whole number part and bits
[14:0] are the fractional parts.

ismeans you can convert to/from positive real val-
ues to this “U(1,15)” format by dividing/multiplying
by 32768.

Unfortunately, Verilog does not have a built-in sin
function so you must generate the test vectors – the
input angle and the corresponding sine value – using
your favorite programming language and then read
the test vectors into your testbench (don’t include the
test vectors in your testbench code as the original au-
thor did – that would be too easy).

For example, if your favorite programming lan-
guage were Matlab (or Octave) you might write:

a=0:pi/2/20:pi/2;
fprintf(fopen('asg2.tv','w'),'%05x %05x\n',...

[a*32768;sin(a)*32768]);

to generate 20 test vectors between 0 and π/.
Write a self-checking testbench that reads values

from your test vector file and applies them to the
module you’re testing. Your testbench should com-
pare the cordic module’s sin output to the expected
value and $display() the angle, the expected sin
value, the actual computed sin value and the differ-
ence. Keep track of the largest difference found and
$display() it at the end.

To read the test vectors you can use the
$readmemh() system tasks used in the last as-
signment to read all the values at once to a single
array or $fopen and $fread() to read one test
vector at a time. Here are some examples of the
latter, assuming fd and n are ints:

...
fd = $fopen("asg2.tv","r") ;
...
for (n=0 ; $fscanf(fd,"%x %x",angle[n],sine[n]) == 2 ; n++) ;

asg2.tex 1 2017-03-07 10:50

https://github.com/freecores/verilog_cordic_core
http://opencores.org/project,verilog_cordic_core
http://web.archive.org/web/20110208101211/http://fpgadesigner.com/
https://www.gnu.org/software/octave/

Note that due to the “pipelined” design there is a
delay of 16 clock cycles between changes to the input
and the corresponding value appearing on the output.
You can start your “checker” process 16 clock cycles
aer the start of the input or you can process one test
vector at a time by leaving a delay equal to at least the
pipeline delay between changing the input and check-
ing the output.

Submit your testbench code and the complete
simulation transcript showing everything from the
simulator start to end messages as well as your
$display() output to the dropbox on the course
web site.

2

