ELEX 7660 : Digital System Design
2017 Winter Term

Assignment 2

Due Monday, March 20. Submit your assignment using the appropriate dropbox on the course web site. Assignments
submitted after the solutions are made available will be given a mark of zero.

Question 1

BigSemiCo Ltd. has hired you to help with verifica-
tion this summer. Your manager has given you a file,
cordic.v!, with some old-style Verilog code. This
file defines a module, cordic, that can be used to
compute trigonometric functions.

Your manager is thinking of using the module in
an important project where it will be used to com-
pute sines of angles. She wants to know if the module
works properly so she’s asked you to write a testbench
to see how accurate the results are.

The module cordic is defined as follows:

“define XY_BITS 16
“define THETA_BITS 16
“define CORDIC_1 17'd19896 // CORDIC inverse

module cordic (

input wire clk,

input wire rst,

input wire signed [XY_BITS:0] x_1i,
input wire signed ["XY_BITS:0] y_i,
input wire signed [THETA_BITS:0] theta_i,

output wire signed ["XY_BITS:0] X_0,
output wire signed [XY_BITS:0] y_o,
output wire signed [THETA_BITS:0] theta_o

By now you can probably figure out the purpose of
clk and rst. As described in the file’s header com-
ments, the module can be used to compute sines by
setting:

y-i=20;
x_i = “CORDIC_1
theta_i = the input angle

and then after 16 clock cycles (the pipeline delay) the
output will be:

y_o = sin(theta_i)

"This is in asg2.zip on the course web site and actually
comes from github (via opencores.org and the author’s site).
comes with documentation and a testbench. But for this assign-
ment you must write your own.

asg2.tex

The input angle, theta_i, is specified in radians
and valid values are between 0 and 7/2. The angle
and the input x and y values are in the following fixed-
point format (from the documentation):

... the format U(1,15) where bit 16 is the sign
bit, bit 15 is the whole number part and bits
[14:0] are the fractional parts.

This means you can convert to/from positive real val-
ues to this “U(1,15)” format by dividing/multiplying
by 32768.

Unfortunately, Verilog does not have a built-in sin
function so you must generate the test vectors — the
input angle and the corresponding sine value — using
your favorite programming language and then read
the test vectors into your testbench (don’t include the
test vectors in your testbench code as the original au-
thor did - that would be too easy).

For example, if your favorite programming lan-
guage were Matlab (or Octave) you might write:

a=0:pi/2/20:pi/2;
fprintf (fopen('asg2.tv','w'), '%056x %05x\n',...
[a*32768;sin(a)*32768]) ;

to generate 20 test vectors between 0 and 7/2.

Write a self-checking testbench that reads values
from your test vector file and applies them to the
module you're testing. Your testbench should com-
pare the cordic modul€’s sin output to the expected
value and $display () the angle, the expected sin
value, the actual computed sin value and the differ-
ence. Keep track of the largest difference found and
$display () it at the end.

To read the test vectors you can use the
$readmemh () system tasks used in the last as-
signment to read all the values at once to a single
array or $fopen and $fread() to read one test
vector at a time. Here are some examples of the
latter, assuming fd and n are ints:

fd = $fopen("asg2.tv","r") ;

for (n=0 ; $fscanf(fd,"%x %x",angle[n],sine[n]) == 2 ; n++) ;

2017-03-07 10:50

https://github.com/freecores/verilog_cordic_core
http://opencores.org/project,verilog_cordic_core
http://web.archive.org/web/20110208101211/http://fpgadesigner.com/
https://www.gnu.org/software/octave/

Note that due to the “pipelined” design there is a
delay of 16 clock cycles between changes to the input
and the corresponding value appearing on the output.
You can start your “checker” process 16 clock cycles
after the start of the input or you can process one test
vector at a time by leaving a delay equal to at least the
pipeline delay between changing the input and check-
ing the output.

Submit your testbench code and the complete
simulation transcript showing everything from the
simulator start to end messages as well as your
$display() output to the dropbox on the course
web site.

