
EECE 485 : DIGITAL INSTRUMENTATION FOR MECHANICAL SYSTEMS

2000/2001 WINTER SESSION TERM 1

Digital Logic Design
This lecture reviews combinational and sequential logic design and shows how state machines can be implemented as
digital logic circuits.
After this lecture you should be able to design a combinational or sequential logic circuit from a description of its
behaviour.

Applications for Logic Circuits

Some control applications may require the design
of custom digital logic circuits. In this course we
will only cover the design of relatively simple cir-
cuits. Some examples of situations where the design
of logic circuits is required are:

� when the controller is too simple for a micro-
computer implementation. For example, a sim-
ple alarm system may only requires a flip-flop
and a few logic gates.

� when it is necessary to implement operations
that cannot be done fast enough under computer
control. For example, a computer could not
count events happening at a rate of 100 MHz.

� when “glue” logic is required to interface a pe-
ripheral IC chip to the microprocessor. For ex-
ample, address decoders and buffers are usually
required to attach an analog-to-digital converter
chip to a microprocessor’s data bus.

Combinational Logic

A combinational logic circuit is one where the output
depends only on the current input and not on past in-
puts. Therefore we can determine the output simply
by considering the current input. We will learn three
ways to represent combinational circuits and how to
convert between them.

The first type of description is a truth table. A truth
table is a table that enumerates all of the possible in-
puts and the corresponding outputs.

The second representation is as an equation using
boolean variables and operators to define the value of
each output variable as a function of the input vari-
ables. We can also use boolean algebra to simplify
the resulting equations.

The final type of description is a circuit diagram
(typically called a “schematic”) that shows the inter-
connection of hardware logic gates. A gate is a cir-
cuit that implements a boolean logic function such as
“and” or “nor”.

Truth Tables

A truth table is simply a table showing the value of
each output for each possible combination of the in-
put variables.

For example, the truth table for a circuit with 3-
inputs (labelled a � b � c), and two outputs (x and y)
might begin as follows:

a b c x y
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0

This particular truth table is for a device that out-
puts (in binary) the number of ’1’s in the input.

Exercise 31: Complete the table.

Boolean Algebra

It is also possible to write an algebraic expression
for each output variable as a function of the input
variables. In boolean algebra we use variables which
can take on values of true or false. Typically true is
represented as the value one or a high voltage and

lec4.tex 1

false as zero or a low voltage. However the opposite
convention (“active low”) logic is also common.

The logical AND function is expressed as implied
multiplication (sometimes as a dot (a � b) and logical
OR as addition (a

�
b). The notation a is used for the

logical complement (NOT) of a.

Sum of Products Form

From the truth table for a combinational circuit we
can write an expression for an output as a function of
the input variables.

One way to do this is as a “sum of products” (an
“OR” of “AND”s). There will be one term in this
sum for each line of the truth table in which the out-
put variable has the value one. Each term is the prod-
uct of each of the input variables – either the input
variable (if that variable is 1 in that row) or its com-
plement (if that variable is 0).

For example, the variable x above takes on a value
of 1 in two lines (the fourth and sixth lines) so there
would be two terms. The first term corresponds to
the case where the input variables are a � 0, b � 1
and c � 1. So the term is abc. Note that this product
will only be true when a, b and c have the desired
values, that is, only for the combination of inputs on
the fourth line.

If we form the other terms in the sum in a similar
way (one term for each of the other lines where the
desired output variable takes on the value one) we
will have an expression that evaluates to ’1’ only for
those lines and will evaluate to zero in all other cases.

Exercise 32: Write out the expressions for the two variables in

the table above (assume the output is zero for the input condi-

tions that are not shown).

Logic Identities

Having written down the expression for the desired
output we can use a number of boolean logic identi-
ties to simplify the expression. This is normally used
to simplify the resulting hardware implementation.

There are a number of basic identities that can be
obtained by inspection:

ABC ��� AB � C � A � BC �
AB � BA

AA � A
A1 � A
A0 � 0

A � B � C ��� AB
�

AC
A
�

AB � A
A
�

BC ��� A � B ��� A � C �
A
�

B
�

C ��� A � B � � C � A
� � B � C �

A
�

B � B
�

A
A
�

A � A
A
�

1 � 1
A
�

0 � A
1 � 0
0 � 1

A
�

A � 1
AA � 0
A � A

A
�

AB � A
�

B

There are also two useful relations called DeMor-
gan’s theorem:

(A+B) � AB
AB � A

�
B

In practice, computer software is used to perform
these minimizations in all but the simplest cases.

Exercise 33: Simplify the logic expressions for x and y.

Logic Gates

Having simplified the algebraic form of the combi-
national logic circuit we can then proceed to draw a
circuit diagram using logic gates that will implement
the desired function. These logic gates are available
in the form of integrated circuits. Chips are available
to implement all of the common boolean logic oper-
ations (AND, OR, NAND, NOR, XOR, NOT, etc.).
Programmable logic devices (PLDs) are chips which
can be configured (“programmed”) after manufac-
turing to perform complex logic functions. Modern
practice is to use PLDs for all but the simplest logic
functions.

It is useful to know that it is possible to synthesize
any of the logic functions using only NAND gates or
only NOR gates.

Exercise 34: Design a logic circuit called a full adder. It should

have three one-bit inputs (two addends and a carry input) and

should generate a one-bit result plus a carry-out. Individual full

2

adders can be chained together to create multiple-bit addition

circuits.

Sequential Logic

A sequential logic circuit is one where the output de-
pends not only on the current input but also on the
past inputs. These circuits are thus said to have mem-
ory.

We will start by showing how a sequential logic
circuit that “remembers” its past input can be put to-
gether. This type of circuit is called a flip-flop. Then
we will describe the operation of one of the most
common types of flip-flops, the synchronous D (de-
lay) flip-flop.

Sequential logic circuits are state machines. Once
the operation of the required circuit is specified as a
state machine, the design of the circuit can proceed
in a straightforward fashion. We will see how to do
this and a design a simple controller as an example.

The RS latch

The schematic of an RS latch is as follows:
R

S

Q

Q

The circuit has two inputs R (reset) and S (set) and
two outputs Q (the state of the flip-flop) and Q (the
complement of Q).

If R=1 and S=0, then we can show that the only
possible output values are Q=0 and Q=1. Similarly
if R=0 and S=1 we can show that Q=1 and Q=0.

When both R=0 and S=0 the outputs are func-
tions only of themselves and retain their values. Thus
when both inputs are low the circuit remembers the
previously set state.

When both R=1 and S=1 both outputs go low and
this violates the condition that Q and Q have comple-
mentary values so this set of inputs is not allowed. A
circuit that uses this RS flip-flop should therefore be
designed so that these conditions don’t happen (such
as by using additional logic at the inputs).

The D flip-flop

The D (delay) flip-flop has a two inputs, the next-
state input (D) and a clock input (usually labelled
with a triangle on the schematic symbol).

D Q

Q

clock

The D flip-flop has the property that the state only
changes when the clock signal changes state from
low to high. In the truth table for the flip-flop this
is shown by an arrow.

D clock Q Q
1

�
1 0

0
�

0 1
X 0 Q(t-) Q(t-)

Usually many (or all) of the flip-flops in a cir-
cuit will have the same signal applied to their clock
inputs. This synchronous operation guarantees that
their states will change at the same time.

D flip-flops often have additional inputs that can
preset the state to zero or one.

Design of Sequential Logic Circuits

The first step in the design of a sequential logic cir-
cuit is to specify the inputs, outputs, states, and tran-
sition conditions just as in the design of any other
state machine.

Next we choose a sufficient number of flip-flops to
represent all of the possible states. n flip-flops can be
used to represent up to 2n states (e.g. 3 flip-flops can
encode up to 8 states).

We then build a table similar to the tabular form
of the state machine representation that has one line
for for each possible combination of inputs and flip-
flop states. On each line we also show the flip-flop
inputs required to move to the desired next state. We
also write out a table showing the required outputs
for each state.

3

The last step is to design two combinational logic
circuits to implement the two truth tables. The in-
puts to the first circuit are the outputs of the flip-flops
(representing the current state) and any inputs to the
sequential circuit. This circuit’s output is fed back
to the inputs of the flip-flops (representing the next
state). The second circuit’s input are the current state
and its outputs are the outputs of the sequential cir-
cuit.

output

co
m

bi
na

tio
na

l

 lo

gi
c

memory
input

co
m

bi
na

tio
na

l

 lo

gi
c

We also need to apply a clock signal to the clock
inputs of the flip-flops. The sequential circuit will
change state (although perhaps to the same state) at
every positive edge of this clock signal.

Example

We need to design a controller for a simple drilling
machine. The machine is designed to drill holes in
wooden boards that are passing by the machine on a
conveyor belt.

The controller has two inputs: a sensor that tells
us that a board is in position (board=1) and a sensor
on the drill that tells us that the hole has been drilled
through (done=1). There are two outputs: a signal to
drive an electrically-driven hook that grabs the next
board coming along the belt, preventing it from con-
tinuing and holding it in place for drilling (hold=1)
and a signal that turns on the drill (drill=1).

The controller must actuate the board “capture and
hold” mechanism and then wait until a board is in po-
sition (state = WAITING). Then it must run the drill
until the hole is drilled (state = DRILLING). Then
it must release the board and wait until the board
leaves the drilling station (state = RELEASING) and
go back to wait for the next board to come along. We
will ignore error conditions in this example.

From the design specification we can identify
three states and draw the state diagram.

Exercise 35: Draw the state transition diagram.

We can arbitrarily assign the controller states to
three of the four possible combinations of flip-flop

states.
Then we build the tabular form of the state dia-

gram and include the following columns:

� the current state name

� the flip-flop values for the current state

� one line for each possible set of input conditions
for each state

� the output values for each of these lines

� the next state name for each of these lines

� the flip-flop values for these states

Exercise 36: Write out the state transition table showing the

binary encoding of the states.

The final step is to develop the combinational cir-
cuits for each of the flip-flop inputs and each of the
controller outputs. These will be functions of the cur-
rent flip-flop outputs (the current state) and the in-
puts. These functions can be written in sum of prod-
ucts form by inspection of the table.

Exercise 37: Obtain the boolean equations for the state flip-flop

inputs.

These functions can then be simplified if possible
and the schematic diagram drawn from these expres-
sions.

4

