
EECE 485 : DIGITAL INSTRUMENTATION FOR MECHANICAL SYSTEMS

2000/2001 WINTER SESSION TERM 1

Solutions to Assignment 1

Question 1

decimal binary hex
8 1000 0x8
7 0111 0x7

16 10000 0x10
15 1111 0xf

256 100000000 0x100
255 11111111 0xff
237 1110 1101 0xEd

Question 2

binary hex decimal
1011 0x0b 11

1011 1011 0xbb 187
1000 0000 0x80 128

11 1100 0x3c 60
0011 1100 0x3c 60

Question 3

hex binary decimal
0x0e 0000 1110 15

0xe 0000 1110 15
0xAA 1010 1010 170
0xFA 1111 1010 250
0x40 0100 0000 64
0x18 0001 1000 24

Question 4

1. A bitwise ’and’ operation with a ’1’ bit retains
the value of that bit. A bitwise ’and’ operation
with a ’0’ bit always sets that bit to ’0’.

(0xaa & 0x0f)
= 0x0a

2. (0x3c & 0xf0) | (0x3c & 0x0f)
= (0x30) | (0x0c)
= 0x3c

3. Note that the && is the logical and operator.

3 * (0xf0 && 0x0f)
= 3 * (0x1)
= 0x3

4. An exclusive-or with a ’1’ bit inverts that bit.

(0x3c ˆ 0xff) + (1 < 3)
= (0xc3) + (1)
= 0xc4

5. ˜ (128 | ’ ’)
= ˜ (0x80 | 0x20)
= ˜ (0xa0)
= 0x5f

6. Note that the || is the logical ‘or’ operator.

128 || (’ ’ == 0x20)
= 128 || (0x20 == 0x20)
= 128 || 1
= 0x01

Question 5

/* Print the binary value of an integer
less than 32768. We start at the
largest applicable power of 2 and
work our way down to the smallest
power of 2. For each power, if that
power is "contained" in the number we
remove it and print a ’1’, otherwise
we print a ’0’. When all powers have
been tested the result is that we
have printed the binary
representation of the number. */

#include <stdio.h>

sol1.tex 1

void printbin (int n)
{

int p ;
p = 16384 ;
while (p >= 1) {
if (n >= p) {

n = n - p ;
printf ("1") ;

} else {
printf ("0") ;

}
p = p / 2 ;

}
printf ("\n") ;

}

Question 6

This solution uses an index variable n which is also
used to count the number of characters preceeding
the terminating zero (null) character.

int len (char s[])
{

int n ;
n = 0 ;
while (s[n] != 0) {
n = n + 1 ;

}
return n ;

}

Question 7

Using the labels given in the diagram the inputs
are: obs (obstruction detected), up, down,top, and
bottom. The outputs are: raise, and lower.

There are 3 combinations of outputs: (1) the
“raise” motor turned on, (2) the “lower” motor turned
on, and (3) neither motor turned on. The controller
must therefore have at least 3 states. We will assign
these states the labels U, D, and S, respectively. We
will attempt to produce a correct design with this
many states and add additional states if required to
meet the specifications. The outputs for each state
are thus:

state raise lower
U 1 0
D 0 1
S 0 0

Comparing the outputs required for each state and
the state encoding, we see that both tables are the
same so the output equations are: U � A and D � B.

A simple state transition diagram would be as fol-
lows:

down==1

top==1 bottom==1

down==1up==1 || osbt==1

up==1 || obs == 1

U S D

The diagram above (like the question itself) is am-
biguous because the logical expressions for various
state transitions are not mutually exclusive. For ex-
ample, it is not clear what should happen if both
the up and down inputs are ’1’. These ambiguities
need to be resolved before a controller can be imple-
mented. The following state transition table unam-
biguously gives the transitions which are taken for
each input condition. The symbol ’X’ is used as the
“don’t care” value indicating that the same transition
takes place regardless of the value of that particular
input.

The tables below were prepared by assuming that
the controller obeys the inputs in the following or-
der of priority: obstruction, the expected limit switch
in (top/bottom), and direction buttons (up/down). If
both buttons are pressed simultaneously the door re-
verses direction.

A row containing N ’X’s is equivalent to 2N rows
with the ’X’s replaced with the 2N combinations of
1’s and 0’s. A quick check is to make sure that if
there are Nin inputs the sum of the 2Ns is 2Nin .

current input next
state conditions state

obs up down top bottom
D 1 X X X X U
D 0 X X X 1 S
D 0 0 X X 0 D
D 0 1 X X 0 U
S 1 X X X X U
S 0 0 0 X X S
S 0 0 1 X X D
S 0 1 0 X X U
S 0 1 1 X X S
U 1 X X X X U
U 0 X X 1 X S
U 0 X 0 0 X U
U 0 X 1 0 X D

2

Note that in each state there is exactly one row
(transition) that matches (would happen) any possi-
ble pattern (input). Anything else would be an am-
biguous specification.

We’ll use A and B as the state variables. We’ll use
the following state encoding (others are also possi-
ble):

state A B
U 1 0
D 0 1
S 0 0

The state transition table can be re-written using
these encoding as:

current input next
state conditions state

A B obs up down top bottom A
�

B
�

0 1 1 X X X X 1 0
0 1 0 X X X 1 0 0
0 1 0 0 X X 0 0 1
0 1 0 1 X X 0 1 0
0 0 1 X X X X 1 0
0 0 0 0 0 X X 0 0
0 0 0 0 1 X X 0 1
0 0 0 1 0 X X 1 0
0 0 0 1 1 X X 0 0
1 0 1 X X X X 1 0
1 0 0 X X 1 X 0 0
1 0 0 X 0 0 X 1 0
1 0 0 X 1 0 X 0 1

I’ll use the boolean variables o � u � d � t � and b for
obs, up, down, top, and bottom respectively.

The next-state equations are:

A
�

� ABo
�

ABoub
�

ABo
�

ABoud
�

ABo
�

ABodt

B
�

� ABoub
�

ABoud
�

ABodt

The schematic is:

A B o u d t b

B’

A’

Question 8

The controller inputs are the coin detector outputs
(labelled X and Y). The controller output is the candy
release signal (labelled R). The four states corre-
spond to the possible sum of money deposited: 0,
5c, 10c, and 15c. The state transition diagram is:

0c

01 01 01

10 1x 1x
11

5c 10c 15c

The release is only turned on when the count of
money reaches 15 cents. Tabular descriptions of the
state transitions and outputs are:

current input next
state conditions state

X Y
0c 0 0 0c
0c 0 1 5c
0c 1 0 10c
0c 1 1 15c
5c 0 0 5c
5c 0 1 10c
5c 1 X 15c

10c 0 0 10c
10c 0 1 15c
10c 1 X 15c
15c X X 0c

state R
0c 0
5c 0

10c 0
15c 1

3

