Chapter 1 from: David M. Beazley, Python Essential Reference,
4th Edition. Pearson Education, 2009.

David M. Beazley

Python

Essential Reference

Fourth Edition

Developer’s Library

L

Copied under Permission from Access Copyright. Further re-
production, distribution or transmission is prohibited, except as
otherwise permitted by law.

http://www.accesscopyright.ca/

1

A Tutorial Introduction

This chapter provides a quick introduction to Python. The goal is to illustrate most of
Python’s essential features without getting too bogged down in special rules or details.
To do this, the chapter briefly covers basic concepts such as variables, expressions, con-
trol flow, functions, generators, classes, and input/output. This chapter is not intended to
provide comprehensive coverage. However, experienced programmers should be able to
extrapolate from the material in this chapter to create more advanced programs.
Beginners are encouraged to try a few examples to get a feel for the language. If you
are new to Python and using Python 3, you might want to follow this chapter using
Python 2.6 instead. Virtually all the major concepts apply to both versions, but there are
a small number of critical syntax changes in Python 3—mostly related to printing and
I/O—that might break many of the examples shown in this section. Please refer to
Appendix A, “Python 3,” for further details.

Running Python

Python programs are executed by an interpreter. Usually, the interpreter is started by
simply typing python into a command shell. However, there are many different imple-
mentations of the interpreter and Python development environments (for example,
Jython, IronPython, IDLE, ActivePython, Wing IDE, pydeyv, etc.), so you should consult
the documentation for startup details. When the interpreter starts, a prompt appears at
which you can start typing programs into a simple read-evaluation loop. For example, in
the following output, the interpreter displays its copyright message and presents the user
with the >>> prompt, at which the user types the familiar “Hello World” command:
Python 2.6rc2 (r26rc2:66504, Sep 19 2008, 08:50:24)

[GCC 4.0.1 (Apple Inc. build 5465)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> print "Hello World"

Hello World
>>>

6 Chapter 1 A Tutorial Introduction

Note

If you try the preceding example and it fails with a SyntaxError, you are probably
using Python 3. If this is the case, you can continue to follow along with this chapter,
but be aware that the print statement turned into a function in Python 3. Simply add
parentheses around the items to be printed in the examples that follow. For instance:

>>> print ("Hello World")
Hello World
>>>

Putting parentheses around the item to be printed also works in Python 2 as long as
you are printing just a single item. However, it's not a syntax that you commonly see in
existing Python code. In later chapters, this syntax is sometimes used in examples in
which the primary focus is a feature not directly related to printing, but where the exam-
ple is supposed to work with both Python 2 and 3.

Python’s interactive mode is one of its most useful features. In the interactive shell,
you can type any valid statement or sequence of statements and immediately view the
results. Many people, including the author, even use interactive Python as their desktop
calculator. For example:
>>> 6000 + 4523.50 + 134.12

10657.620000000001
>>> + 8192.32

18849.940000000002
>>>

When you use Python interactively, the special variable _ holds the result of the last
operation. This can be useful if you want to save or use the result of the last operation
in subsequent statements. However, it’s important to stress that this variable is only
defined when working interactively.

If you want to create a program that you can run repeatedly, put statements in a file
such as the following:

helloworld.py
print "Hello World"

Python source files are ordinary text files and normally have a .py suffix. The # charac-
ter denotes a comment that extends to the end of the line.

To execute the helloworld.py file, you provide the filename to the interpreter as
follows:

o

% python helloworld.py
Hello World

%
S

On Windows, Python programs can be started by double-clicking a .py file or typing
the name of the program into the Run command on the Windows Start menu. This
launches the interpreter and runs the program in a console window. However, be aware
that the console window will disappear immediately after the program completes its
execution (often before you can read its output). For debugging, it is better to run the
program within a Python development tool such as IDLE.

On UNIX, you can use #! on the first line of the program, like this:

#!/usr/bin/env python
print "Hello World"

Variables and Arithmetic Expressions 7

The interpreter runs statements until it reaches the end of the input file. If it’s running
interactively, you can exit the interpreter by typing the EOF (end of file) character or
by selecting Exit from pull-down menu of a Python IDE. On UNIX, EOF is Ctrl+D;
on Windows, it’s Ctrl+Z. A program can request to exit by raising the SystemExit
exception.

>>> raise SystemExit

Variables and Arithmetic Expressions

The program in Listing 1.1 shows the use of variables and expressions by performing a
simple compound-interest calculation.

Listing 1.1 Simple Compound-Interest Calculation

principal = 1000 # Initial amount
rate = 0.05 # Interest rate
numyears = 5 # Number of years
year = 1

while year <= numyears:
principal = principal * (1 + rate)
print year, principal # Reminder: print(year, principal) in Python 3
year += 1

The output of this program is the following table:

1050.0
1102.5
1157.625
1215.50625
1276.2815625

U W N

Python is a dynamically typed language where variable names are bound to different
values, possibly of varying types, during program execution. The assignment operator
simply creates an association between a name and a value. Although each value has an
associated type such as an integer or string, variable names are untyped and can be
made to refer to any type of data during execution. This is different from C, for exam-
ple, in which a name represents a fixed type, size, and location in memory into which a
value is stored. The dynamic behavior of Python can be seen in Listing 1.1 with the
principal variable. Initially, it’s assigned to an integer value. However, later in the pro-
gram it’s reassigned as follows:

principal = principal * (1 + rate)

This statement evaluates the expression and reassociates the name principal with the
result. Although the original value of principal was an integer 1000, the new value is
now a floating-point number (rate is defined as a float, so the value of the above
expression is also a float). Thus, the apparent “type” of principal dynamically changes
from an integer to a float in the middle of the program. However, to be precise, it’s not
the type of principal that has changed, but rather the value to which the principal
name refers.

A newline terminates each statement. However, you can use a semicolon to separate
statements on the same line, as shown here:

principal = 1000; rate = 0.05; numyears = 5;

8 Chapter 1 A Tutorial Introduction

The while statement tests the conditional expression that immediately follows. If the
tested statement is true, the body of the while statement executes. The condition is
then retested and the body executed again until the condition becomes false. Because
the body of the loop is denoted by indentation, the three statements following while in
Listing 1.1 execute on each iteration. Python doesn’t specify the amount of required
indentation, as long as it’s consistent within a block. However, it is most common (and
generally recommended) to use four spaces per indentation level.

One problem with the program in Listing 1.1 is that the output isn’t very pretty. To
make it better, you could right-align the columns and limit the precision of principal
to two digits. There are several ways to achieve this formatting. The most widely used
approach is to use the string formatting operator (%) like this:

print "%3d %0.2f" % (year, principal)
print ("%3d %0.2f" % (year, principal)) # Python 3

Now the output of the program looks like this:

1050.00
1102.50
1157.63
1215.51
1276.28

U W N

Format strings contain ordinary text and special formatting-character sequences such as
ngdr, "ss", and "$£". These sequences specify the formatting of a particular type of
data such as an integer, string, or floating-point number, respectively. The special-
character sequences can also contain modifiers that specify a width and precision. For
example, "$3d" formats an integer right-aligned in a column of width 3, and "%0.2£"
formats a floating-point number so that only two digits appear after the decimal point.
The behavior of format strings is almost identical to the C printf () function and is
described in detail in Chapter 4, “Operators and Expressions.”

A more modern approach to string formatting is to format each part individually
using the format () function. For example:

print format (year,"3d"),format (principal,"0.2£f")
print (format (year, "3d") , format (principal,"0.2f")) # Python 3

format () uses format specifiers that are similar to those used with the traditional string
formatting operator (%). For example, "3d" formats an integer right-aligned in a col-
umn of width 3, and "0.2£" formats a float-point number to have two digits of accura-
cy. Strings also have a format () method that can be used to format many values at
once. For example:

print "{0:3d} {1:0.2f£}".format (year,principal)
print ("{0:3d} {1:0.2f}".format (year,principal)) # Python 3

In this example, the number before the colon in "{0:3d}" and "{1:0.2£}" refers to
the associated argument passed to the format () method and the part after the colon is
the format specifier.

Conditionals 9

Conditionals

The if and else statements can perform simple tests. Here’s an example:

if a < b:

print "Computer says Yes"
else:

print "Computer says No"

The bodies of the 1f and else clauses are denoted by indentation. The else clause is
optional.
To create an empty clause, use the pass statement, as follows:
if a < b:
pass # Do nothing

else:
print "Computer says No"

You can form Boolean expressions by using the or, and, and not keywords:

if product == "game" and type == "pirate memory" \
and not (age < 4 or age > 8):
print "I'll take it!"

Note

Writing complex test cases commonly results in statements that involve an annoyingly
long line of code. To improve readability, you can continue any statement to the next line
by using a backslash (\) at the end of a line as shown. If you do this, the normal inden-
tation rules don’t apply to the next line, so you are free to format the continued lines as
you wish.

Python does not have a special switch or case statement for testing values. To handle
multiple-test cases, use the elif statement, like this:

if suffix == ".htm":
content = "text/html"
elif suffix == ".jpg":
content = "image/jpeg"
elif suffix == ".png":
content = "image/png"
else:

raise RuntimeError ("Unknown content type")

To denote truth values, use the Boolean values True and False. Here’s an example:

if 'spam' in s:
has_spam = True
else:
has spam = False

All relational operators such as < and > return True or False as results. The in opera-
tor used in this example is commonly used to check whether a value is contained inside
of another object such as a string, list, or dictionary. It also returns True or False, so
the preceding example could be shortened to this:

has_spam = 'spam' in s

10 Chapter 1 A Tutorial Introduction

File Input and Output

The following program opens a file and reads its contents line by line:

f = open("foo.txt") # Returns a file object
line = f.readline() # Invokes readline() method on file
while line:
print line, # trailing ',' omits newline character
print (line,end="'") # Use in Python 3
line = f.readline()
f.close()

The open () function returns a new file object. By invoking methods on this object,
you can perform various file operations. The readline () method reads a single line of
input, including the terminating newline. The empty string is returned at the end of the
file.

In the example, the program is simply looping over all the lines in the file foo. txt.
Whenever a program loops over a collection of data like this (for instance input lines,
numbers, strings, etc.), it is commonly known as iferation. Because iteration is such a com-
mon operation, Python provides a dedicated statement, for, that is used to iterate over
items. For instance, the same program can be written much more succinctly as follows:

for line in open("foo.txt"):
print line,

To make the output of a program go to a file, you can supply a file to the print state-
ment using >>, as shown in the following example:

f = open("out", "w") # Open file for writing
while year <= numyears:

principal = principal * (1 + rate)
print >>f,"%$3d %0.2f" % (year,principal)
year += 1

f.close()

The >> syntax only works in Python 2. If you are using Python 3, change the print
statement to the following:

print ("%$3d %0.2f" % (year,principal), file=f)

In addition, file objects support a write () method that can be used to write raw data.
For example, the print statement in the previous example could have been written this
way:

f.write("%3d %0.2f\n" % (year,principal)

Although these examples have worked with files, the same techniques apply to the stan-
dard output and input streams of the interpreter. For example, if you wanted to read
user input interactively, you can read from the file sys.stdin. If you want to write data
to the screen, you can write to sys.stdout, which is the same file used to output data
produced by the print statement. For example:

import sys

sys.stdout.write ("Enter your name :")
name = sys.stdin.readline()

In Python 2, this code can also be shortened to the following:

name = raw_input ("Enter your name :")

Strings 11

In Python 3, the raw_input () function is called input (), but it works in exactly the
same manner.

Strings
To create string literals, enclose them in single, double, or triple quotes as follows:

a = "Hello World"
b = 'Python is groovy'
Cc = nn YlComputer says INoY nnn

The same type of quote used to start a string must be used to terminate it. Triple-
quoted strings capture all the text that appears prior to the terminating triple quote, as
opposed to single- and double-quoted strings, which must be specified on one logical
line. Triple-quoted strings are useful when the contents of a string literal span multiple
lines of text such as the following:

print '''Content-type: text/html

<hl> Hello World </hls>
Click <a href="http://www.python.org"shere.

Strings are stored as sequences of characters indexed by integers, starting at zero. To
extract a single character, use the indexing operator s[1] like this:

a = "Hello World"
b = al4] # b= "o

To extract a substring, use the slicing operator s[1i:7].This extracts all characters from
s whose index k is in the range i <= k < j. If either index is omitted, the beginning
or end of the string is assumed, respectively:

c = al:5] # ¢ = "Hello"
d = al6:] # d = "World"
e = a[3:8] # e = "lo Wo"

Strings are concatenated with the plus (+) operator:

g =a + " This is a test"

Python never implicitly interprets the contents of a string as numerical data (i.e., as in
other languages such as Perl or PHP). For example, + always concatenates strings:

X = "37"
y = ngomn
Z =X +Yy # z = "3742" (String Concatenation)

To perform mathematical calculations, strings first have to be converted into a numeric
value using a function such as int () or float (). For example:

z = int(x) + int(y) # 2z =79 (Integer +)
Non-string values can be converted into a string representation by using the str (),
repr (), or format () function. Here’s an example:

s = "The value of x is " + str(x)
s = "The value of x is " + repr(x)
s = "The value of x is " + format (x,"4d")

12 Chapter 1 A Tutorial Introduction

Although str () and repr () both create strings, their output is usually slightly differ-
ent. str () produces the output that you get when you use the print statement,
whereas repr () creates a string that you type into a program to exactly represent the
value of an object. For example:

>>> X = 3.4

>>> str(x)

'3.4"

>>> repr(x)

'3.3999999999999999"

>>>

The inexact representation of 3.4 in the previous example is not a bug in Python. It is
an artifact of double-precision floating-point numbers, which by their design can not
exactly represent base-10 decimals on the underlying computer hardware.

The format () function is used to convert a value to a string with a specific format-
ting applied. For example:

>>> format (x,"0.5£f")
'3.40000'"
>>>

Lists

Lists are sequences of arbitrary objects. You create a list by enclosing values in square
brackets, as follows:

names = ["Dave", "Mark", "Ann", "Phil"]

Lists are indexed by integers, starting with zero. Use the indexing operator to access and
modify individual items of the list:

a = names[2] # Returns the third item of the list, "Ann"
names [0] = "Jeff" # Changes the first item to "Jeff"

To append new items to the end of a list, use the append () method:

names.append ("Paula")

To insert an item into the middle of a list, use the insert () method:

names.insert (2, "Thomas")

You can extract or reassign a portion of a list by using the slicing operator:

b = names[0:2] # Returns ["Jeff", "Mark"]

c = names|[2:] # Returns ["Thomas", "Ann", "Phil", "Paula"]
names [1] = 'Jeff! # Replace the 2nd item in names with 'Jeff!
names [0:2] = ['Dave', 'Mark', 'Jeff'] # Replace the first two items of

the list with the list on the right.
Use the plus (+) operator to concatenate lists:
a = [1,2,3] + [4,5] # Result is [1,2,3,4,5]
An empty list is created in one of two ways:

names = [] # An empty list
names = list() # An empty list

Lists 13

Lists can contain any kind of Python object, including other lists, as in the following
example:

a = [1,"Dave",3.14, ["Mark", 7, 9, [100,101]], 10]

Items contained in nested lists are accessed by applying more than one indexing opera-
tion, as follows:

all] # Returns "Dave"
a[3][2] # Returns 9
a[3][3][1] # Returns 101

The program in Listing 1.2 illustrates a few more advanced features of lists by reading a
list of numbers from a file specified on the command line and outputting the minimum
and maximum values.

Listing 1.2 Advanced List Features

import sys # Load the sys module

if len(sys.argv) != 2 # Check number of command line arguments
print "Please supply a filename"
raise SystemExit (1)

f = open(sys.argv[1]) # Filename on the command line
lines = f.readlines() # Read all lines into a list
f.close()

Convert all of the input values from strings to floats
fvalues = [float(line) for line in lines

Print min and max values
print "The minimum value is ", min(fvalues)
print "The maximum value is ", max(fvalues)

The first line of this program uses the import statement to load the sys module from
the Python library. This module is being loaded in order to obtain command-line argu-
ments.

The open () function uses a filename that has been supplied as a command-line
option and placed in the list sys.argv.The readlines () method reads all the input
lines into a list of strings.

The expression [float (line) for line in lines] constructs a new list by
looping over all the strings in the list 1ines and applying the function float () to each
element. This particularly powerful method of constructing a list is known as a list com-
prehension. Because the lines in a file can also be read using a for loop, the program can
be shortened by converting values using a single statement like this:

fvalues = [float(line) for line in open(sys.argv([1l])]

After the input lines have been converted into a list of floating-point numbers, the
built-in min () and max () functions compute the minimum and maximum values.

14 Chapter 1 A Tutorial Introduction

Tuples

To create simple data structures, you can pack a collection of values together into a sin-
gle object using a tuple.You create a tuple by enclosing a group of values in parentheses
like this:

stock = ('GOOG', 100, 490.10)
address = ('www.python.org', 80)
person = (first name, last_name, phone)

Python often recognizes that a tuple is intended even if the parentheses are missing:

stock = 'GOOG', 100, 490.10
address = 'www.python.org', 80
person = first name, last_name, phone

For completeness, 0- and 1-element tuples can be defined, but have special syntax:

a= () # 0-tuple (empty tuple)
b = (item,) # 1-tuple (note the trailing comma)
c = item, # 1-tuple (note the trailing comma)

The values in a tuple can be extracted by numerical index just like a list. However, it is
more common to unpack tuples into a set of variables like this:
name, shares, price = stock

host, port = address
first_name, last_name, phone = person

Although tuples support most of the same operations as lists (such as indexing, slicing,
and concatenation), the contents of a tuple cannot be modified after creation (that is,
you cannot replace, delete, or append new elements to an existing tuple). This reflects
the fact that a tuple is best viewed as a single object consisting of several parts, not as a
collection of distinct objects to which you might insert or remove items.

Because there is so much overlap between tuples and lists, some programmers are
inclined to ignore tuples altogether and simply use lists because they seem to be more
flexible. Although this works, it wastes memory if your program is going to create a
large number of small lists (that is, each containing fewer than a dozen items). This is
because lists slightly overallocate memory to optimize the performance of operations
that add new items. Because tuples are immutable, they use a more compact representa-
tion where there is no extra space.

Tuples and lists are often used together to represent data. For example, this program
shows how you might read a file consisting of different columns of data separated by
commas:

File containing lines of the form "name, shares,price"

filename = "portfolio.csv"
portfolio = []
for line in open(filename) :
fields = line.split(",") # Split each line into a list
name = fields[0] # Extract and convert individual fields

shares = int(fields[1])

price = float(fields[2])

stock = (name,shares,price) # Create a tuple (name, shares, price)
portfolio.append (stock) # Append to list of records

The split () method of strings splits a string into a list of fields separated by the given
delimiter character. The resulting portfolio data structure created by this program

looks like a two-dimension array of rows and columns. Each row is represented by a

tuple and can be accessed as follows:

>>> portfolio[0]
('GOOG', 100, 490.10
>>> portfoliol[l]
('MSFT', 50, 54.23)
>>>

Individual items of data can be accessed like this:

>>> portfolio[1] [1]

50
>>> portfolio[1] [2]
54.23

>>>

Here’s an easy way to loop over all of the records and expand fields into a set of

variables:

total = 0.0
for name, shares, price in portfolio:
total += shares * price

Sets

A set is used to contain an unordered collection of objects. To create a set, use the
set () function and supply a sequence of items such as follows:

s = set([3,5,9,10]) # Create a set of numbers
t = set("Hello") # Create a set of unique characters

Sets

Unlike lists and tuples, sets are unordered and cannot be indexed by numbers.

Moreover, the elements of a set are never duplicated. For example, if you inspect the
value of t from the preceding code, you get the following:

>>> t
Set([lH‘, 'el, |lll IO‘])

Notice that only one '1' appears.

15

Sets support a standard collection of operations, including union, intersection, differ-

ence, and symmetric difference. Here’s an example:

New items can be added to a set using add () or update ():

t.add('x") # Add a single item

s.update ([10,37,42]) # Adds multiple items to s

An item can be removed using remove () :

t.remove ('H'")

a=t|s # Union of t and s

b==t&s # Intersection of t and s

c=t-s # Set difference (items in t, but not in s)
d=t " s # Symmetric difference (items in t or s,

but not both)

16 Chapter 1 A Tutorial Introduction

Dictionaries

A dictionary is an associative array or hash table that contains objects indexed by keys.
You create a dictionary by enclosing the values in curly braces ({ }), like this:

stock = {
"name" : "GOoG",
"shares" : 100,
"price" : 490.10

To access members of a dictionary, use the key-indexing operator as follows:

name = stock["name"]
value = stock["shares"] * shares|["price"]

Inserting or modifying objects works like this:

stock ["shares"] = 75
stock ["date"] = "June 7, 2007"

Although strings are the most common type of key, you can use many other Python
objects, including numbers and tuples. Some objects, including lists and dictionaries,
cannot be used as keys because their contents can change.

A dictionary is a useful way to define an object that consists of named fields as
shown previously. However, dictionaries are also used as a container for performing fast
lookups on unordered data. For example, here’s a dictionary of stock prices:
prices = {

"GOOG" : 490.10,
"AAPL" : 123.50,

"IBM" : 91.50,
"MSFT" : 52.13

}

An empty dictionary is created in one of two ways:

prices = {} # An empty dict
prices = dict() # An empty dict

Dictionary membership is tested with the in operator, as in the following example:
if "SCOX" in prices:
p = prices["SCOX"]
else:
p =10.0
This particular sequence of steps can also be performed more compactly as follows:

p = prices.get ("SCOX",0.0)

To obtain a list of dictionary keys, convert a dictionary to a list:

syms = list(prices) # syms = ["AAPL", "MSFT", "IBM", "GOOG"]

Use the del statement to remove an element of a dictionary:

del prices["MSFT"]

Dictionaries are probably the most finely tuned data type in the Python interpreter. So,
if you are merely trying to store and work with data in your program, you are almost
always better off using a dictionary than trying to come up with some kind of custom
data structure on your own.

Iteration and Looping 17

Iteration and Looping

The most widely used looping construct is the for statement, which is used to iterate
over a collection of items. Iteration is one of Python’s richest features. However, the
most common form of iteration is to simply loop over all the members of a sequence
such as a string, list, or tuple. Here’s an example:

for n in [1,2,3,4,5,6,7,8,9]:
print "2 to the %d power is %d" % (n, 2**n)

In this example, the variable n will be assigned successive items from the list
[1,2,3,4,..,9] on each iteration. Because looping over ranges of integers is quite
common, the following shortcut is often used for that purpose:

for n in range(1,10):
print "2 to the %d power is %d" % (n, 2**n)

The range (1,7 [,stridel) function creates an object that represents a range of inte-
gers with values i to j-1.If the starting value is omitted, it’s taken to be zero. An
optional stride can also be given as a third argument. Here’s an example:

a = range(5) #a=20,1,2,3,4
b = range(1,8) #b=1,2,3,4,5,6,7
c = range(0,14,3) #c=20,3,6,9,12
d = range(8,1,-1) #d=28,7,6,5,4,3,2

One caution with range () is that in Python 2, the value it creates is a fully populated
list with all of the integer values. For extremely large ranges, this can inadvertently con-
sume all available memory. Therefore, in older Python code, you will see programmers
using an alternative function xrange () . For example:

for i in xrange(100000000) : #1i=20,1,2,...,99999999
statements

The object created by xrange () computes the values it represents on demand when
lookups are requested. For this reason, it is the preferred way to represent extremely
large ranges of integer values. In Python 3, the xrange () function has been renamed to
range () and the functionality of the old range () function has been removed.

The for statement is not limited to sequences of integers and can be used to iterate
over many kinds of objects including strings, lists, dictionaries, and files. Here’s an
example:

a = "Hello World"
Print out the individual characters in a

for ¢ in a:
print c

b = ["Dave","Mark", "Ann", "Phil"]
Print out the members of a list
for name in b:

print name

c = { 'GOOG' : 490.10, 'IBM' : 91.50, 'AAPL' : 123.15 }
Print out all of the members of a dictionary
for key in c:

print key, clkey]

Print all of the lines in a file
f = open("foo.txt")

18 Chapter 1 A Tutorial Introduction

for line in f:
print line,

The for loop is one of Python’s most powerful language features because you can cre-
ate custom iterator objects and generator functions that supply it with sequences of val-
ues. More details about iterators and generators can be found later in this chapter and in
Chapter 6, “Functions and Functional Programming.”

Functions

You use the def statement to create a function, as shown in the following example:

def remainder(a,b):

g=a//Db # // is truncating division.
r =a - g*b
return r

To invoke a function, simply use the name of the function followed by its arguments
enclosed in parentheses, such as result = remainder (37,15).You can use a tuple to
return multiple values from a function, as shown here:
def divide(a,b):

gq=a//Db # If a and b are integers, g is integer

r =a - g*b

return (q,r)

When returning multiple values in a tuple, you can easily unpack the result into sepa-
rate variables like this:

quotient, remainder = divide(1456,33)

To assign a default value to a function parameter, use assignment:

def connect (hostname, port, timeout=300) :
Function body

When default values are given in a function definition, they can be omitted from subse-
quent function calls. When omitted, the argument will simply take on the default value.
Here’s an example:

connect ('www.python.org', 80)

You also can invoke functions by using keyword arguments and supplying the argu-
ments in arbitrary order. However, this requires you to know the names of the argu-
ments in the function definition. Here’s an example:

connect (port=80, hostname="www.python.org")

When variables are created or assigned inside a function, their scope is local. That is, the
variable is only defined inside the body of the function and is destroyed when the func-
tion returns. To modify the value of a global variable from inside a function, use the
global statement as follows:

count = 0
def fool():
global count
count += 1 # Changes the global variable count

Generators 19

Generators

Instead of returning a single value, a function can generate an entire sequence of results
if it uses the yield statement. For example:
def countdown (n) :

print "Counting down!"

while n > 0:

yield n # Generate a value (n)
n-=1

Any function that uses yield is known as a generator. Calling a generator function cre-
ates an object that produces a sequence of results through successive calls to a next ()
method (or __next__ () in Python 3). For example:

>>> ¢ = countdown (5)

>>> c.next()

Counting down!

5

>>> c.next ()

4

>>> c.next ()

3

>>>

The next () call makes a generator function run until it reaches the next yield state-

ment. At this point, the value passed to yield is returned by next (), and the function

suspends execution. The function resumes execution on the statement following yield

when next () is called again. This process continues until the function returns.
Normally you would not manually call next () as shown. Instead, you hook it up to

a for loop like this:

>>> for i in countdown(5):

.. print i,

Counting down!

54321

>>>

Generators are an extremely powerful way of writing programs based on processing
pipelines, streams, or data flow. For example, the following generator function mimics
the behavior of the UNIX tail -f command that’s commonly used to monitor log

files:

tail a file (like tail -f)
import time

def tail(f):
f.seek(0,2) # Move to EOF
while True:
line = f.readline() # Try reading a new line of text
if not line: # If nothing, sleep briefly and try again
time.sleep(0.1)
continue
yield line

Here’s a generator that looks for a specific substring in a sequence of lines:

def grep(lines, searchtext):
for line in lines:
if searchtext in line: yield line

20 Chapter 1 A Tutorial Introduction

Here’s an example of hooking both of these generators together to create a simple pro-
cessing pipeline:
A python implementation of Unix "tail -f | grep python"
wwwlog = tail (open("access-log"))
pylines = grep (wwwlog, "python")
for line in pylines:
print line,

A subtle aspect of generators is that they are often mixed together with other iterable
objects such as lists or files. Specifically, when you write a statement such as for item
in s, s could represent a list of items, the lines of a file, the result of a generator func-
tion, or any number of other objects that support iteration. The fact that you can just
plug different objects in for s can be a powerful tool for creating extensible programs.

Coroutines

Normally, functions operate on a single set of input arguments. However, a function can
also be written to operate as a task that processes a sequence of inputs sent to it. This
type of function is known as a coroutine and is created by using the yield statement as
an expression (yield) as shown in this example:
def print_matches (matchtext) :

print "Looking for", matchtext

while True:

line = (yield) # Get a line of text

if matchtext in line:
print line

To use this function, you first call it, advance it to the first (yield), and then start
sending data to it using send (). For example:

>>> matcher = print matches("python")

>>> matcher.next () # Advance to the first (yield)
Looking for python

>>> matcher.send("Hello World")

>>> matcher.send("python is cool")

python is cool

>>> matcher.send ("yow!")

>>> matcher.close() # Done with the matcher function call
>>>

A coroutine is suspended until a value is sent to it using send () . When this happens,
that value is returned by the (yield) expression inside the coroutine and is processed
by the statements that follow. Processing continues until the next (yield) expression is
encountered—at which point the function suspends. This continues until the coroutine
function returns or close () is called on it as shown in the previous example.

Coroutines are useful when writing concurrent programs based on producer-
consumer problems where one part of a program is producing data to be consumed by
another part of the program. In this model, a coroutine represents a consumer of data.
Here is an example of using generators and coroutines together:
A set of matcher coroutines
matchers = [

print matches("python"),

print_matches("guido"),
print_matches ("jython")

Objects and Classes 21

Prep all of the matchers by calling next ()
for m in matchers: m.next ()

Feed an active log file into all matchers. Note for this to work,
a web server must be actively writing data to the log.
wwwlog = tail (open("access-log"))
for line in wwwlog:
for m in matchers:
m.send(line) # Send data into each matcher coroutine

Further details about coroutines can be found in Chapter 6.

Objects and Classes

All values used in a program are objects. An object consists of internal data and methods
that perform various kinds of operations involving that data.You have already used
objects and methods when working with the built-in types such as strings and lists. For
example:

items = [37, 42] # Create a list object
items.append(73) # Call the append() method

The dir () function lists the methods available on an object and is a useful tool for
interactive experimentation. For example:

>>> items = [37, 42]
>>> dir(items)

[' add ', ' «class ', ' contains ', ' delattr ', ' delitem ',
'append', 'count', 'extend', 'index', 'insert', 'pop',
'remove', 'reverse',6 'sort'

>>>

When inspecting objects, you will see familiar methods such as append () and

insert () listed. However, you will also see special methods that always begin and end
with a double underscore. These methods implement various language operations. For
example, the __add__ () method implements the + operator:

>>> items.__add _([73,101])

[37, 42, 73, 101]
>>>

The class statement is used to define new types of objects and for object-oriented
programming. For example, the following class defines a simple stack with push (),
pop (), and length() operations:

class Stack (object) :

def __init__(self): # Initialize the stack
self.stack = []

def push(self,object):
self.stack.append (object)

def pop(self):
return self.stack.pop()

def length(self):
return len(self.stack)

In the first line of the class definition, the statement class Stack (object) declares
Stack to be an object.The use of parentheses is how Python specifies inheritance—in
this case, Stack inherits from object, which is the root of all Python types. Inside the
class definition, methods are defined using the def statement. The first argument in each

22 Chapter 1 A Tutorial Introduction

method always refers to the object itself. By convention, self is the name used for this
argument. All operations involving the attributes of an object must explicitly refer to the
self variable. Methods with leading and trailing double underscores are special meth-
ods. For example, __init__ is used to initialize an object after it’s created.

To use a class, write code such as the following:

s = Stack() # Create a stack

s.push ("Dave") # Push some things onto it
s.push (42)

s.push([3,4,5])

x = s.pop () # x gets [3,4,5]

y = s.pop() # y gets 42

del s # Destroy s

In this example, an entirely new object was created to implement the stack. However, a
stack is almost identical to the built-in list object. Therefore, an alternative approach
would be to inherit from 1list and add an extra method:
class Stack(list):

Add push() method for stack interface

Note: lists already provide a pop() method.

def push(self,object):
self.append (object)

Normally, all of the methods defined within a class apply only to instances of that class
(that is, the objects that are created). However, different kinds of methods can be
defined such as static methods familiar to C++ and Java programmers. For example:
class EventHandler (object) :

@staticmethod

def dispatcherThread() :

while (1):
Wait for requests

EventHandler.dispatcherThread () # Call method like a function

In this case, @staticmethod declares the method that follows to be a static method.
@staticmethod is an example of using an a decorator, a topic that is discussed further in
Chapter 6.

Exceptions

If an error occurs in your program, an exception is raised and a traceback message such
as the following appears:
Traceback (most recent call last):

File "foo.py", line 12, in <module>
IOError: [Errno 2] No such file or directory: 'file.txt'

The traceback message indicates the type of error that occurred, along with its location.
Normally, errors cause a program to terminate. However, you can catch and handle
exceptions using try and except statements, like this:
try:

f = open("file.txt","r")
except IOError as e:

print e

Modules 23

If an IOError occurs, details concerning the cause of the error are placed in e and con-
trol passes to the code in the except block. If some other kind of exception is raised,
it’s passed to the enclosing code block (if any). If no errors occur, the code in the
except block is ignored. When an exception is handled, program execution resumes
with the statement that immediately follows the last except block. The program does
not return to the location where the exception occurred.

The raise statement is used to signal an exception. When raising an exception, you
can use one of the built-in exceptions, like this:

raise RuntimeError ("Computer says no")

Or you can create your own exceptions, as described in the section “Defining New
Exceptions” in Chapter 5, Program Structure and Control Flow.”

Proper management of system resources such as locks, files, and network connections
is often a tricky problem when combined with exception handling. To simplify such
programming, you can use the with statement with certain kinds of objects. Here is an
example of writing code that uses a mutex lock:

import threading
message_lock = threading.Lock ()

with message lock:
messages.add (newmessage)

In this example, the message lock object is automatically acquired when the with
statement executes. When execution leaves the context of the with block, the lock is
automatically released. This management takes place regardless of what happens inside
the with block. For example, if an exception occurs, the lock is released when control
leaves the context of the block.

The with statement is normally only compatible with objects related to system
resources or the execution environment such as files, connections, and locks. However,
user-defined objects can define their own custom processing. This is covered in more
detail in the “Context Management Protocol” section of Chapter 3, “Types and
Objects.”

Modules

As your programs grow in size, you will want to break them into multiple files for easi-
er maintenance. To do this, Python allows you to put definitions in a file and use them
as a module that can be imported into other programs and scripts. To create a module,
put the relevant statements and definitions into a file that has the same name as the
module. (Note that the file must have a .py suftix.) Here’s an example:
file : div.py
def divide(a,b):

q = a/b # If a and b are integers, g is an integer

r =a - g*b

return (q,r)

To use your module in other programs, you can use the import statement:

import div
a, b = div.divide (2305, 29)

24 Chapter 1 A Tutorial Introduction

The import statement creates a new namespace and executes all the statements in the
associated .py file within that namespace. To access the contents of the namespace after
import, simply use the name of the module as a prefix, as in div.divide () in the pre-
ceding example.

If you want to import a module using a different name, supply the import statement
with an optional as qualifier, as follows:

import div as foo
a,b = foo.divide(2305,29)

To import specific definitions into the current namespace, use the from statement:

from div import divide
a,b = divide(2305,29) # No longer need the div prefix

To load all of a module’s contents into the current namespace, you can also use the
following:

from div import *

As with objects, the dir () function lists the contents of a module and is a useful tool
for interactive experimentation:

>>> import string
>>> dir(string)

[' builtins ', ' doc_ ', ' file ', ' name ', ' idmap',
'_idmapL', '_lower', '_swapcase', '_upper', 'atof', 'atof_error’,
'atoi', 'atoi_error', 'atol', 'atol_error', 'capitalize',
'capwords', 'center',6 'count',6 'digits', 'expandtabs',6 'find',

Getting Help

When working with Python, you have several sources of quickly available information.
First, when Python is running in interactive mode, you can use the help () command
to get information about built-in modules and other aspects of Python. Simply type
help () by itself for general information or help ('modulename') for information
about a specific module. The help () command can also be used to return information
about specific functions if you supply a function name.

Most Python functions have documentation strings that describe their usage. To
print the doc string, simply print the __doc__ attribute. Here’s an example:

>>> print issubclass. _doc
issubclass(C, B) -> bool

Return whether class C is a subclass (i.e., a derived class) of class B.
When using a tuple as the second argument issubclass(X, (A, B, ...)),

is a shortcut for issubclass(X, A) or issubclass(X, B) or ... (etc.).
>>>

Last, but not least, most Python installations also include the command pydoc, which
can be used to return documentation about Python modules. Simply type pydoc
topic at a system command prompt.

