
ELEC 464 : MICROCOMPUTER SYSTEM DESIGN

1996/97 WINTER SESSION TERM 1

Solutions to Assignment 8

Question 1

There are, of course, many possible solutions. The
program below is an ad-hoc solution. This approach
is suitable for relatively simple problems such as
this. For more complex problems a more structured
approach using one or more state machines, fore-
ground/background tasks and timers would be more
appropriate.

/*
Sample program for ELEC 464
microcontroller assignment.

Ed Casas, 96/10/30

The code required to implement the bonus
solution gets compiled in if the
preprocessor symbol BONUS is defined. */

/* The 8051.h include file is specific to the
Hi-Tec 8051 C compiler. It defines the
8051 I/O ports (in this case, P1 and
P3). */

#include <8051.h>

#define u_char unsigned char

/* The various LED patterns that are output
to port P1 to generate the traffic light
displays. P1.7 to P1.5 (the MS 3 bits)
drive the Red/Yellow/Green traffic light
LEDs and P1.4 to P1.3 drive the Red/Green
pedestrian crossing LEDs. These are
active-low outputs so setting a bit to ’0’
(output low) causes the corresponding LED
to be turned on. The symbol LED_xy
corresponds to a traffic light of colour x
and pedestrian light of colour y where
R=red, Y=yellow and G=green. */

/* R Y G R G X X X */
#define LED_ON 0x07 /* 0 0 0 0 0 1 1 1 */
#define LED_OFF 0xff /* 1 1 1 1 1 1 1 1 */
#define LED_GR 0xcf /* 1 1 0 0 1 1 1 1 */
#define LED_YR 0xaf /* 1 0 1 0 1 1 1 1 */
#define LED_RG 0x77 /* 0 1 1 1 0 1 1 1 */
#define LED_RR 0x6f /* 0 1 1 0 1 1 1 1 */

/* Patterns required to "blink" the lights.
Notation is same as above with O=off. */

#define LED_OR 0xef /* 1 1 1 0 1 1 1 1 */
#define LED_RO 0x7f /* 0 1 1 1 1 1 1 1 */

/* Macro to convert a digit (0-9) into the value
required to display a number in binary on the
MS 4 bits of P1. */

#define NUMTOLED(n) (˜((n)<<4) | 0xf)

/* A bit mask to extract the bit of P3 that
contains the current push button
status. This input is active-low (when the
button is pushed the input goes low). */

#define BUTTONMASK 0x04

/* The sequence of test and group ID patterns
to be displayed on the LEDs when the
program starts up. */

#define NPATTERN 4
u_char testpattern [NPATTERN] = {

LED_ON, LED_OFF, NUMTOLED(9), NUMTOLED(6) } ;

/* Timing loop constant. ’MSLOOP’ is the
number of empty "for" loops required to
cause a delay of about one millisecond.
NOTE: This is compiler- and hardware-
dependent. */

#define MSLOOP 55

/* Global flag indicating "button pushed"
state. */

char pushed ;

/* Wait for ’ms’ milliseconds. The button is
polled every millisecond and the global
"pushed" flag is set if the button is
pushed. ’ms’ must be >=1 for the button to
be polled. */

void waitms (int ms)
{

int i ;

while (ms-- > 0) {
i = 100 ;
/* 1 ms delay: */
for (i=MSLOOP ; i > 0 ; i--) ;
if ((P3 & BUTTONMASK) == 0)

pushed = 1 ;
}

}

/* Set the LEDs. The value ’bits’ is written
to port P1. */

void setleds (u_char bits)
{

P1 = bits ;

1

}

#ifdef BONUS

/* Output ’n’ sequences of p1 and p2 with a
500 ms period. The blink frequency is 2 Hz
and the duration is n/2 seconds. */

void blink (u_char p1, u_char p2, u_char n)
{
for (; n > 0 ; n--) {
setleds (p1) ;
waitms (250) ;
setleds (p2) ;
waitms (250) ;

}
}

/* As above, but terminates when button is
pushed. */

void waitblink (u_char p1, u_char p2)
{
char i ;
while (! pushed) {
setleds (p1) ;
for (i=0 ; !pushed && i<25 ; i++)

waitms (10) ;
setleds (p2) ;
for (i=0 ; !pushed && i<25 ; i++)

waitms (10) ;
}

}

#endif

void main(void)
{
char i ;

/* Show the test and ID patterns on the
LEDs. */

pushed = 0 ;
while (! pushed) {

for (i=0 ; i<NPATTERN ; i++) {

/* show a test/ID pattern for 1 second */

setleds (testpattern[i]) ;
waitms (1000) ;

/* flash LED’s to indicate end of a
pattern in case a pattern repeats
or is all-zero */

setleds (LED_OFF) ; waitms (100) ;
setleds (LED_ON) ; waitms (50) ;
setleds (LED_OFF) ; waitms (100) ;

}
}

/* end of diagnostics, assume no pedestrian
yet */

pushed = 0 ;
setleds (LED_GR) ;

while (1) { /* loop forever */

/* wait for pedestrian */
while (! pushed) {

#ifdef BONUS
waitblink (LED_GR, LED_OR) ;

#else
waitms (1) ;

#endif
}

/* turn traffic light yellow, wait 1 s */
setleds (LED_YR) ;
waitms (1000) ;

/* turn traffic light red, pedestrian
light green, reset "pedestrian is
waiting" flag, and wait for 1 s */

setleds (LED_RG) ;
pushed = 0 ;
waitms (1000) ;

/* turn pedestrian light red for 2 s */
#ifdef BONUS

blink (LED_RR, LED_RO, 4) ;
#else

setleds (LED_RR) ;
waitms (2000) ;

#endif

/* turn traffic light green for 5 s */
#ifdef BONUS

blink (LED_GR, LED_OR, 10) ;
#else

setleds (LED_GR) ;
waitms (5000) ;

#endif

}

}

2

