ELEC 464 : MICROCOMPUTER SY STEM DESIGN
1996/97 WINTER SESSION TERM 1

Solutionsto Assignment 8

Question 1

There are, of course, many possible solutions. The
program below is an ad-hoc solution. This approach
is suitable for relatively simple problems such as
this. For more complex problems a more structured
approach using one or more state machines, fore-
ground/background tasks and timers would be more

appropriate.

/*
Sanpl e program for ELEC 464
m crocontrol | er assignnent.
Ed Casas, 96/10/30

The code required to inplenent the bonus

solution gets conpiled in if the
preprocessor synmbol BONUS is defined. */

/* The 8051.h include file is specific to the
H - Tec 8051 C conpiler. 1t defines the
8051 I/O ports (in this case, Pl and
P3). */

#i ncl ude <8051. h>
#define u_char unsigned char

/* The various LED patterns that are out put
to port Pl to generate the traffic Iight
displays. P1.7 to P1.5 (the M5 3 bits)
drive the Red/ Yellow Green traffic Iight
LEDs and P1.4 to P1.3 drive the Red/ Geen
pedestrian crossing LEDs. These are
active-low outputs so setting a bit to '0’
(output | ow) causes the correspondi ng LED
to be turned on. The synbol LED xy
corresponds to a traffic light of colour x
and pedestrian light of colour y where
R=red, Y=yellow and G=green. */

/* RYGR GX X X */
#define LED_ ON 0x07 /* 0000 0111*
#defi ne LED_OFF Oxff /*1 111 1111*%*
#define LED_ GR Oxcf /*1 100 1111*
#define LED_YR Oxaf /*1010 1111*
#define LED_ RG 0x77 /* 0111 0111*
#define LED_RR O0x6f /* 0110 1111*
/* Patterns required to "blink" the lights.
Notation is sane as above with O=off. */
#define LED_ OR Oxef /*1 110 1111*
#define LED_ RO Ox7f /f* 0111 1111*

/* Macro to convert a digit (0-9) into the val ue
required to display a nunber in binary on the
Ms 4 bits of P1. */

#define NUMIOLED(n) (~((n)<<4) |

/* Abit mask to extract the bit of P3 that
contains the current push button

status. This input is active-low (when the
button is pushed the input goes low). */

oxf)

#def i ne BUTTONMASK 0x04

/* The sequence of test and group |ID patterns
to be displayed on the LEDs when the
programstarts up. */

#def i ne NPATTERN 4
u_char testpattern [NPATTERN] = {
LED ON, LED OFF, NUMIOLED(9), NUMIOLED(6) }

/* Timng |l oop constant. ’'MSLOOP' is the
nunber of enpty "for" loops required to
cause a del ay of about one mllisecond.
NOTE: This is conpiler- and hardware-
dependent. */

#def i ne MSLOOP 55

/* G obal flag indicating "button pushed"
state. */

char pushed ;

/* Wait for "ms’ milliseconds. The button is
poll ed every nmillisecond and the gl obal
"pushed" flag is set if the button is
pushed. 'ns’ nust be >=1 for the button to
be polled. */

void waitns (int ns)

{. .

int i

while (ms-- >0) {
i = 100 ;
/* 1 ms delay: */
for (i=MSLOOP ; i >0 ; i--) ;
if ((P3 & BUTTONMASK) == 0)
pushed = 1 ;

}

}

/* Set the LEDs. The value 'bits’ is witten

to port Pl1. */

voi d setleds (u_char bits)

{
P1 = bits ;

#i f def BONUS

/* Qut put

void blink (u_char pl

}

/* As above

void waitblink (u_char pl

{

}

'n’ sequences of pl and p2 with a

500 ns period. The blink frequency is 2 Hz

and the duration is n/2 seconds. */

u_char p2, u_char n)

for (; n>0
setleds (pl)
waitms (250)
setleds (p2)
waitms (250)

}

n?-) {

but term nates when button is
pushed. */

u_char p2)

char
while (! pushed) {
setleds (pl)
for (1=0; !pushed && i <25
waitms (10)
setleds (p2)
for (1=0; !pushed && i <25
waitms (10)
}

i++)

i++)

#endi f

voi d mai n(voi d)

{

char

/* Show the test and ID patterns on the
LEDs. */

pushed = 0
while (! pushed) {
for (1=0; i<NPATTERN ; i++) {

/* show a test/ID pattern for 1 second */

setleds (testpattern[i])
wai tms (1000)

/* flash LED' s to indicate end of a
pattern in case a pattern repeats
or is all-zero */

setleds (LED OFF)
setleds (LED ON)
setleds (LED OFF)

waitms (100)
waitms (50)
waitms (100)

}

/* end of diagnostics,
yet */

assunme no pedestrian

pushed = 0
setleds (LED GR)

while (1) {

/* loop forever */

/* wait for pedestrian */
while (! pushed) {

#i f def BONUS

wai tblink (LED GR LED OR)

#el se

waitms (1)

#endi f

}

/* turn traffic light yellow, wait 1 s */
setleds (LED_YR)
wai tms (1000)

/* turn traffic light red, pedestrian
light green, reset "pedestrian is
wai ting" flag, and wait for 1 s */

setleds (LED RG)
pushed = 0
wai tms (1000)

/* turn pedestrian light red for 2 s */

#i f def BONUS

blink (LED RR LED RO, 4)

#el se

setleds (LED RR)
wai tms (2000)

#endi f

/* turn traffic light green for 5 s */

#i f def BONUS

blink (LED GR LED OR 10)

#el se

setleds (LED GR)
wai tms (5000)

#endi f

}

