
ELEC 464 : MICROCOMPUTER SYSTEM DESIGN

1996/97 WINTER SESSION TERM 1

Solutions to Assignment 7

Question 1

Design

Define Inputs and Outputs

The first step in designing a state machine is to de-
fine the inputs and outputs. These have already been
defined in the assignment.

Define States

The next step is to define the required states. When
designing a Moore state machine (this is usually
the best choice) there will be at least one state for
each unique combination of outputs. In addition,
changes in the outputs will happen at the same time
as changes of states.

From the problem description and the resulting
simplified timing diagrams it appears that the output
transitions need only happen on the rising edge of a
clock. This design will therefore change state on the
rising edge of the clock. This means that the DRAM
controller states will lag (be delayed by) half a clock
period relative to the CPU bus state.

From the timing diagram we can identify the fol-
lowing combinations of outputs:

Output State
hold rama ras cas Name
0 row 0 1 M1
0 col 0 0 M2
0 X 0 0 M3
1 X 1 0 R1
1 X 0 0 R2
1 X 1 1 RN
0 X 1 1 MN

where ’X’ means the value driven on the DRAM’s
address inputs does not matter and ‘RN’ and ‘MN’
mean “refresh cycle next” and “memory cycle next”
(see the section “Transition Conditions”). Since for
a Moore state machine the outputs are a function of
the state there must be at least this many states.

Since there must be some way to differentiate the
second and third clock periods of the read cycle,
there must be another state:

Output State
hold rama ras cas Name
1 X 0 0 R3

Figure 1 shows the state of the control signal lines
over three bus cycles and the corresponding con-
troller states.

Define Transition Conditions

The next step in the design process is to define the
state transition as a function of the current state and
the inputs. From the description of the problem, the
states always sequence through the M1 to M3 and the
R1 to R3 states in order.

Since the HOLD output must be asserted in the
cycle before the start of a refresh bus cycle, it’s nec-
essary to assert HOLD in the last state of either a
memory or refresh bus cycle if the next cycle will be
a refresh cycle. Thus we can design the state ma-
chine to transition from either M3 or R3 to MN or
RN depending on the value of RFRSH.

There are alternative ways of choosing states and
transition conditions, any of which will be correct as
long as the requirements are met.

The transition conditions are thus:

current state rfrsh next state
M1 X M2
M2 X M3
R1 X R2
R2 X R3
M3 0 MN
R3 0 MN
M3 1 RN
R3 1 RN
MN X M1
RN X R1

1

RNMN

clk

avalid

a

rama

ras

cas

Read Cycle

rfrsh

hold

holda

Refresh Cycle

row colrow col

Read Cycle

a a

M1 M2 M3 R1 R2 R3 M1 M2 M3 MNMN

Figure 1: Controller States.

Define Outputs

The final step is to define the values of the outputs
for each of the states. In this case the outputs corre-
sponding to each state have already been defined.

Data Registers

A requirement of this design is that the 20-bit CPU
address, A, must be latched at the start of state M1
so that the MS and LS halves can be output to the
DRAM in states M1 and M2. This can be done with
a 20-bit latch which is loaded at the start of M1 and
a multiplexer to select either the MS or LS 10 bits of
the latched address.

Initialization/Synchronization

A practical circuit must have a way of initializing its
state. In this design the AVALID input allows us to
detect the start of a bus cycle. If AVALID is detected
at the start of any state the state must be M1 or R1
depending on the value of RFRSH.

VHDL Description

As usual, we split up the design into a combinational
process for computing the state transitions and a se-
quential process to synchronize state transitions with
the clock edge. We also use two processes to latch
the CPU address (A) at the start of M1 and to out-

put the correct half of the address on RAMA during
states M1 and M2.

In the following architecture we use an enumer-
ation type for the state variables to make the code
easier to read. The synthesizer will assign values to
the states.

-- Solution to ELEC 464 Assignment 7
-- Simple DRAM controller
-- Ed Casas, 96/11/6

entity dramc is
port (clk, rfrsh, avalid, holda : in bit ;

a : in bit_vector (19 downto 0) ;
hold, ras, cas : out bit ;
rama : out bit_vector (9 downto 0)) ;

end ;

architecture rtl of dramc is
-- states
type statetype is (M1,M2,M3,R1,R2,R3,MN,RN) ;
-- latched CPU address
signal tmpa : bit_vector (19 downto 0) ;
-- next state
signal state, nexts : statetype ;

begin

-- compute next state
process(state,avalid,rfrsh)
begin

if avalid = ’1’ then
-- synchronize to start of CPU cycle
if rfrsh = ’1’ then

nexts <= R1 ;
else

nexts <= M1 ;
end if ;

2

else
if state = M1 then

nexts <= M2 ;
elsif state = M2 then

nexts <= M3 ;
elsif state = M3 then

if rfrsh = ’1’ then
nexts <= RN ;

else
nexts <= MN ;

end if ;
elsif state = R1 then

nexts <= R2 ;
elsif state = R2 then

nexts <= R3 ;
elsif state = R3 then

if rfrsh = ’1’ then
nexts <= RN ;

else
nexts <= MN ;

end if ;

-- the following conditions should not
-- happen since avalid should be true at
-- start of R1 or M1

elsif state = RN then
nexts <= R1 ;

else -- state = MN then
nexts <= M1 ;

end if ;
end if ;

end process ;

-- outputs
process(state)
begin

case state is
when M1 => hold <= ’0’ ;

ras <= ’0’ ; cas <= ’1’ ;
when M2 => hold <= ’0’ ;

ras <= ’0’ ; cas <= ’0’ ;
when M3 => hold <= ’0’ ;

ras <= ’0’ ; cas <= ’0’ ;

when R1 => hold <= ’1’ ;
ras <= ’1’ ; cas <= ’0’ ;

when R2 => hold <= ’1’ ;
ras <= ’0’ ; cas <= ’0’ ;

when R3 => hold <= ’1’ ;
ras <= ’0’ ; cas <= ’0’ ;

when RN => hold <= ’1’ ;
ras <= ’1’ ; cas <= ’1’ ;

when MN => hold <= ’0’ ;
ras <= ’1’ ; cas <= ’1’ ;

end case ;
end process ;

-- state transitions
process(clk,nexts)
begin

if clk’event and clk=’1’ then
state <= nexts ;

end if ;
end process ;

-- output muxed address to DRAM in M1/M2

process(state,tmpa)
begin
case state is

when M1 => rama <= tmpa (19 downto 10) ;
when M2 => rama <= tmpa (9 downto 0) ;
-- otherwise "don’t care"
when others => rama <= "0000000000" ;

end case ;
end process ;

-- latch CPU address at start of M1
process(clk,nexts,a)
begin

if clk’event and clk=’1’ then
if nexts=M1 then

tmpa <= a ;
end if ;

end if ;
end process ;

end rtl ;

Simulation

The VHDL description was analyzed and run with
the test input shown in Figure 1. The results are not
given here to conserve space.

Synthesis

The synthesized schematic is given on the next page.

3

Figure 2: Synthesized schematic.

4

