
ELEC 464 : MICROCOMPUTER SYSTEM DESIGN

1996/97 WINTER SESSION TERM 1

IBM PC Interrupt Structure and 8259 DMA Controllers
This lecture covers the use of interrupts and the vectored interrupt mechanism used on the IBM PC using the Intel 8259
Programmable Interrupt Controller (PIC).
After this lecture you should be able to: decide and explain why interrupts should (or should not) be used to service
a particular peripheral, describe how the 8259 PIC is connected to handle multiple interrupt sources, and write 8088
assembly language code to initialize and service interrupts generated by the 8259 PIC.

1 Review of Interrupts

Many peripheral devices such as serial interfaces,
keyboards and real-time clocks need to be serviced
periodically. For example, incoming characters or
keystrokes have to be read from the peripheral or the
current time value needs to be updated from a peri-
odic clock source.

The two common ways of servicing devices are by
polling and by using interrupts. Polling means that
a status bit on the interface is periodically checked
to see whether some additional operation needs to be
performed, for example whether the device has data
ready to be read. A device can also be designed to
generate an interrupt when it requires service. This
interrupt interrupts normal flow of control and causes
an interrupt service routine (ISR) to be executed to
service the device.

Polling must be done sufficiently fast that data is
not lost. Since each poll requires a certain number of
operations, this creates a certain minimum overhead
(fraction of available CPU cycles) for servicing each
device. In addition, these polling routines must be in-
tegrated into each program that executes on the pro-
cessor.

On the other hand, since the ISR is only exe-
cuted once for each interrupt there is no fixed over-
head for servicing interrupt-driven devices. How-
ever, responding to an interrupt requires some addi-
tional overhead to save the processor state, fetch the
interrupt number and then the corresponding inter-
rupt vector, branch to the ISR and later restore the
processor state.

In general, it is advantageous to use interrupts
when the overhead required by polling would con-
sume a large percentage of the CPU time or would
complicate the design of the software. It is advanta-
geous to use polling when the overhead of servicing

an interrupt is a large percentage of the time available
to service the device.

Exercise: Data is arriving on a serial interface at 4000

characters per second. If this device is serviced by polling,

and each character must be read before another one is re-

ceived, what is the maximum time allowed between polls?

If each poll requires 10 microseconds to complete, what

fraction of the CPU time is always being used up even

when the serial port is idle? What if there were 8 similar

devices installed in the computer?

Exercise: Data is being read from a tape drive interface

at 100,000 characters per second. The overhead to ser-

vice an interrupt and return control to the interrupted pro-

gram is 20 microseconds. Can this device use an ISR to

transfer each character?

It is also possible to use a mixture of interrupt and
polled devices. For example, devices can be polled
by an ISR that executes periodically due to a clock
interrupt. It is also common for devices to buffer
multiple bytes and issue an interrupt only when the
buffer is full (or empty). The ISR can then transfer
the buffer without an ISR overhead for each byte.

In applications where loss of data cannot be tol-
erated (e.g. where safety would be affected) the de-
signer must ensure that all of the devices serviced
by interrupts can be properly serviced under worst-
case conditions. Typically this involves a sequence
of nested interrupts happening closely one after an-
other in a particular order. In some of these systems
it may be easier to use polling to help ensure correct
worst-case behaviour.

2 Maskable and Non-Maskable In-
terrupts

Like most other processors, the 8088 has two types
of interrupts: non-maskable and maskable. Mask-

1



able interrupts (the INTR pin) can be disabled by
clearing the IF bit (flag) in the processor status word.
Non-maskable interrupts (NMI pin) cannot be dis-
abled. An maskable interrupt causes an interrupt ac-
knowledge cycle which is used to fetch an interrupt
type (number) while an NMI always uses the inter-
rupt vector for interrupt type 2.

Exercise: Where is the interrupt vector for NMI?

3 The 8259 in the IBM PC Architec-
ture

The 8088 CPU only has one interrupt request pin. Al-
though simple systems may only have one interrupt
source, more complex systems must have some way
of dealing with multiple interrupt sources. The In-
tel “way of doing things” is to use a chip called a
programmable interrupt controller (PIC). This chip
takes as inputs interrupt request signals from up to 8
peripherals and supplies a single INTR signal to the
CPU as shown below:

8088 CPU 8259 PIC

INTR

IR1
IR2

IR7

IR0
INTA

data bus

INT

address

INTA

.

.

.

fr
om

 p
er

ip
he

ra
ls

CSdecoder

The PIC has 3 purposes:

1. It allows each of the individual interrupts to be
enabled or disabled (masked).

2. It prioritizes interrupts so that if multiple inter-
rupts happen simultaneously the one with the
highest priority is serviced first. The priorities
of the interrupts are fixed, with input IR0 hav-
ing the highest priority and IR7 the lowest. In-
terrupts of lower priority not handled while an
ISR for a higher-level interrupt is active.

3. It provides an interrupt type (number) that the
CPU reads during the interrupt acknowledge cy-
cle. This tells the CPU which of the 8 possible
interrupts occured. The PIC on the IBM PC is
programmed to respond with an interrupt type of

8 plus the particular interrupt signal (e.g. if IR3
was asserted the CPU would read the value 11
from the PIC during the interrupt acknowledge
cycle).

The PIC has two control registers that can be read
or written. On the IBM PC the address decoder
for PIC places these two registers in the I/O address
space at locations 20H and 21H.

Unlike many other microprocessors both INT and
IRx are active-high signals and on the IBM PC the
IRx inputs are configured to be edge-triggered.

The interrupt inputs to the PIC are connected as
follows:

interrupt device
0 timer
1 keyboard
2 reserved
3 serial port 2
4 serial port 1
5 hard disk
6 floppy disk
7 printer 1

Exercise: When the a key on the keyboard is pressed,

which input on the 8259 will be asserted? What will the sig-

nal level be? What value will the 8088 read from the PIC

during the interrupt acknowledge cycle? What addresses

will the CPU read to get the starting address of the key-

board ISR?

On the IBM AT and later models there are more
than 8 interrupt sources and there are two PIC. The
slave PIC supports an additional 8 interrupt inputs
and requests an interrupt from the master PIC as if it
were an interrupting peripheral on IR2.

Exercise: What is the maximum number of interrupt

sources that could be handled using one master and mul-

tiple slave PICs?

4 Programming the 8259 Interrupt
Controller

The initialization of the PIC is rather complicated be-
cause it has many possible operating modes. The
PIC’s operating mode is normally initialized by the
BIOS when the system is booted. We will only con-
sider the standard PIC operating used on the IBM PC
and only a system with a single (master) PIC.

2



In it’s standard mode the PIC operates as follows:

If a particular interrupt source is not masked
then a rising edge on that interrupt request line is
captured and stored (“latched”). Multiple inter-
rupt requests can be “pending” at a given time.

if not ISR for the same or a higher level is active
the interrupt signal to the CPU is asserted

if the CPU’s interrupt enable flag is set then an
interrupt acknowledge cycle will happen and the
interrupt number for the highest pending inter-
rupt is supplied by the PIC to the CPU

at the end of the ISR a command byte (20H)
must be written to the PIC register at address
20H to re-enable interrupts at that level again.
This is called the ‘EOI’ (end-of interrupt) com-
mand.

During normal operation only two operations need
to be performed on the PIC:

1. Disabling (masking) and enabling interrupts
from a particular source. This is done by read-
ing the interrupt mask register (IMR) from lo-
cation 21H, using an AND or OR instruction to
set/clear particular interrupt mask bits.

2. Re-enabling interrupts for a particular level
when the ISR for that level complete. This
is done with the EOI command as described
above.

Masking/Enabling Interrupts

There are three places where interrupts can be dis-
abled: (1) the PIC interrupt mask, (2) the PIC priority
logic, and (3) the CPU’s interrupt enable flag.

If the PIC interrupt mask bit is set then the interrupt
request will not be recognized (or latched). If the PIC
believes an ISR for an higher level interrupt is still
executing due to no EOI command having been given
for that interrupt level it will not allow interrupts of
the same or lower levels. If the interrupt enable bit in
the CPU’s PSW is not set then the interrupt request
signal from the PIC will be ignored.

Note that the CPU’s interrupt enable flag is cleared
when an interrupt happens and is restored when the

process returns from the ISR via the IRET instruc-
tion. This means that ISRs can’t be interrupted (not
even by a higher-level interrupt) unless interrupts are
explicitly re-enabled in the ISR.

Interrupt routines should be kept as short as pos-
sible to minimize the interrupt latency (see below).
Typically this involves having the ISR store values in
a buffer or set flags and then having the bulk of the
processing performed outside the ISR.

It’s possible to allow the CPU to interrupt an ISR
(resulting in nested interrupts) by setting the interrupt
enable bit with the STI instruction.

Exercise: How many levels deep could interrupts be

nested on the IBM PC? In the worst case, how much space

would be required on the interrupted program’s stack to

hold the values pushed during the interrupt acknowledge

cycle?

Sample 8088/8259 ISR

The code below shows an 8088 assembly language
program that includes an ISR. The program sets up an
ISR for interrupt number 8 (the timer interrupt on the
IBM PC). The ISR simply decrements a count. The
main program waits until the count reaches zero and
then terminates.

The timer interrupt on the IBM PC is driven by a
clock that generates one interrupt every 55 millisec-
onds. With the initial count value provided below the
program waits for 15 seconds before terminating.

The main program saves and restores the previous
timer interrupt vector.

When the ISR begins execution only the IP and CS
registers will have been initialized. Any other seg-
ment registers that will be used in the ISR must be
explicitly loaded. In this case the code and data areas
are located in the same segment so DS can be loaded
from CS.

On entry to the ISR only the IP, CS and PSW reg-
isters will have been saved on the caller’s stack. Any
other registers used by the ISR must be saved when
starting the ISR and restored before returning. Other-
wise the state of the interrupted code will be changed
by the ISR and this is likely to cause seemingly-
random failures in other programs.

;

3



; example of program using an ISR for
; IBM PC timer interrupt
;

isrvec equ 4*(8+0) ; location of vector for IR0

code segment public ; .COM file setup
assume cs:code,ds:code
org 100h

start:
mov ax,0 ; use ExtraSegment to access
mov es,ax ; vectors in segment 0

; save old interrupt vector

mov ax,es:[isrvec]
mov prevoff,ax
mov ax,es:[isrvec+2]
mov prevseg,ax

; set up new vector

cli ; disable interrupts until
; vector update is complete

mov ax,offset isr
mov es:[isrvec],ax
mov ax,cs
mov es:[isrvec+2],ax

sti ; re-enable interrupts

; wait until ISR decrements count to zero

loop: mov ax,count
cmp ax,0
jnz loop

; restore old interrupt vector

cli ; disable interrupts until
; vector update is complete

mov ax,prevoff ; restore prev.
mov es:[isrvec],ax ; offset/segment
mov ax,prevseg
mov es:[isrvec+2],ax

sti ; re-enable
; interrupts

; return to DOS

int 20h

; storage for demonstration program

count dw 273
prevoff dw ?
prevseg dw ?

; The ISR itself:

isr:
mov cs:tmpax,ax ; save working registers
mov ax,ds
mov cs:tmpds,ax

mov ax,cs ; set up DS
mov ds,ax

mov ax,count
cmp ax,0 ; don’t decrement if already zero
jz isr1
sub ax,1 ; decrement count
mov count,ax

isr1:

mov al,20h ; write EOI command to 8259 PIC
out 20h,al ; to re-enable interrupts

mov ax,tmpds ; restore working registers
mov ds,ax
mov ax,cs:tmpax

iret ; return from ISR and
; re-enable interrupts

tmpax dw ?
tmpds dw ?

code ends
end start

Exercise: Why must interrupts be disabled while updat-

ing the interrupt vector?

Exercise: How will the PC’s time of day change when

this program is run? What would happen if the interrupt

were not restored?

Exercise: Could a stack be used to save the values of

the registers that will be changed in the ISR? Which stack?

What are the advantages and disadvantages of doing so?

Interrupt Latency

Often a peripheral must be serviced within a certain
time limit after an event. For example, a character
must be read from an input port before the next on ar-
rives.

The interrupt latency is the maximum time taken to
respond to an interrupt request. This will include the
time it takes for the current instruction to complete
and the time for the CPU to respond to the interrupt
(e.g. push CS, IP and PSW, acknowledge the inter-
rupt and fetch the interrupt vector). If an ISR is al-
ready executing and cannot be interrupted then this
also increases the interrupt latency.

4


