ELEC 464 : MICROCOMPUTER SYSTEM DESIGN
1996/97 WINTER SESSION TERM 1

IBM PC Interrupt Structure and 8259 DMA Controllers

Thislecture coversthe use of interruptsand the vectored interrupt mechanismused on the IBM PC using the Intel 8259

Programmable Interrupt Controller (PIC).

After thislecture you should be able to: decide and explain why interrupts should (or should not) be used to service
a particular peripheral, describe how the 8259 PIC is connected to handle multiple interrupt sources, and write 8088
assembly language code to initialize and service interrupts generated by the 8259 PIC.

1 Review of Interrupts

Many peripheral devices such as seria interfaces,
keyboards and real-time clocks need to be serviced
periodically. For example, incoming characters or
keystrokes have to be read from the peripheral or the
current time value needs to be updated from a peri-
odic clock source.

The two common ways of servicing devicesare by
polling and by using interrupts. Polling means that
a status bit on the interface is periodically checked
to see whether some additional operation needsto be
performed, for example whether the device has data
ready to be read. A device can also be designed to
generate an interrupt when it requires service. This
interrupt interruptsnormal flow of control and causes
an interrupt service routine (ISR) to be executed to
service the device.

Polling must be done sufficiently fast that data is
not lost. Since each poll requires acertain number of
operations, this creates a certain minimum overhead
(fraction of available CPU cycles) for servicing each
device. In addition, these polling routines must bein-
tegrated into each program that executes on the pro-
Cessor.

On the other hand, since the ISR is only exe-
cuted once for each interrupt there is no fixed over-
head for servicing interrupt-driven devices. How-
ever, responding to an interrupt requires some addi-
tional overhead to save the processor state, fetch the
interrupt number and then the corresponding inter-
rupt vector, branch to the ISR and later restore the
processor state.

In general, it is advantageous to use interrupts
when the overhead required by polling would con-
sume a large percentage of the CPU time or would
complicate the design of the software. It is advanta-
geous to use polling when the overhead of servicing

aninterrupt isalarge percentage of thetime available
to service the device.

Exercise: Data is arriving on a serial interface at 4000
characters per second. If this device is serviced by polling,
and each character must be read before another one is re-
ceived, what is the maximum time allowed between polls?
If each poll requires 10 microseconds to complete, what
fraction of the CPU time is always being used up even
when the serial port is idle? What if there were 8 similar
devices installed in the computer?

Exercise: Data s being read from a tape drive interface
at 100,000 characters per second. The overhead to ser-
vice an interrupt and return control to the interrupted pro-
gram is 20 microseconds. Can this device use an ISR to
transfer each character?

It isalso possible to use a mixture of interrupt and
polled devices. For example, devices can be polled
by an ISR that executes periodically due to a clock
interrupt. It is aso common for devices to buffer
multiple bytes and issue an interrupt only when the
buffer isfull (or empty). The ISR can then transfer
the buffer without an | SR overhead for each byte.

In applications where loss of data cannot be tol-
erated (e.g. where safety would be affected) the de-
signer must ensure that all of the devices serviced
by interrupts can be properly serviced under worst-
case conditions. Typically this involves a sequence
of nested interrupts happening closely one after an-
other in a particular order. In some of these systems
it may be easier to use polling to help ensure correct
worst-case behaviour.

2 Maskable and Non-Maskable I n-
terrupts

Like most other processors, the 8088 has two types
of interrupts: non-maskable and maskable. Mask-

able interrupts (the INTR pin) can be disabled by
clearing the I F bit (flag) in the processor statusword.
Non-maskable interrupts (NMI pin) cannot be dis-
abled. An maskable interrupt causes an interrupt ac-
knowledge cycle which is used to fetch an interrupt
type (number) while an NMI always uses the inter-
rupt vector for interrupt type 2.

Exercise: Where is the interrupt vector for NMI?

3 The8259inthelBM PC Architec-
ture

The8088 CPU only hasoneinterrupt request pin. Al-
though simple systems may only have one interrupt
source, more complex systems must have some way
of dealing with multiple interrupt sources. The In-
tel “way of doing things’ is to use a chip called a
programmable interrupt controller (PIC). This chip
takes as inputs interrupt request signals from up to 8
peripherals and suppliesasingle INTR signal to the
CPU as shown below:

8088 CPU 8259 PIC
INTR INT ROf— o
INTA INTA IRl &
IR2 f=— §
' 3
data bus . g
IR7 f&— &
address {{ decoder =t CS
The PIC has 3 purposes:

1. It allows each of the individual interruptsto be
enabled or disabled (masked).

2. It prioritizes interrupts so that if multiple inter-
rupts happen simultaneously the one with the
highest priority is serviced first. The priorities
of the interrupts are fixed, with input IRO hav-
ing the highest priority and IR7 the lowest. In-
terrupts of lower priority not handled while an
ISR for ahigher-level interrupt is active.

3. It provides an interrupt type (number) that the
CPU reads during theinterrupt acknowledge cy-
cle. Thistells the CPU which of the 8 possible
interrupts occured. The PIC on the IBM PC is
programmed to respond with an interrupt type of

8 plusthe particular interrupt signal (e.g. if IR3
was asserted the CPU would read the value 11
from the PIC during the interrupt acknowledge
cycle).

The PIC has two control registersthat can be read
or written. On the IBM PC the address decoder
for PIC places these two registersin the 1/0O address
space at locations 20H and 21H.

Unlike many other microprocessors both INT and
IRx are active-high signals and on the IBM PC the
IRx inputs are configured to be edge-triggered.

The interrupt inputs to the PIC are connected as

follows:
interrupt device

timer

keyboard
reserved
serial port 2
serial port 1
hard disk
floppy disk
7 printer 1

Exercise: When the a key on the keyboard is pressed,
which input on the 8259 will be asserted? What will the sig-
nal level be? What value will the 8088 read from the PIC
during the interrupt acknowledge cycle? What addresses
will the CPU read to get the starting address of the key-
board ISR?

On the IBM AT and later models there are more
than 8 interrupt sources and there are two PIC. The
dave PIC supports an additional 8 interrupt inputs
and requests an interrupt from the master PIC asif it
were an interrupting peripheral on IR2.

OOk WNPEO

Exercise: What is the maximum number of interrupt
sources that could be handled using one master and mul-
tiple slave PICs?

4 Programming the 8259 Interrupt
Controller

Theinitialization of the PIC israther complicated be-
cause it has many possible operating modes. The
PIC's operating mode is normally initialized by the
B1OS when the system is booted. We will only con-
sider the standard PIC operating used on the IBM PC
and only a system with a single (master) PIC.

In it's standard mode the PIC operates as follows:

e If a particular interrupt source is not masked
then arising edgeon that interrupt request lineis
captured and stored (“latched”). Multiple inter-
rupt requests can be “pending” at agiven time.

e if not ISR for the same or ahigher level isactive
the interrupt signal to the CPU is asserted

e if the CPU’s interrupt enable flag is set then an
interrupt acknowledge cyclewill happenand the
interrupt number for the highest pending inter-
rupt is supplied by the PIC to the CPU

e at the end of the ISR a command byte (20H)
must be written to the PIC register at address
20H to re-enable interrupts at that level again.
Thisiscalled the ‘EOQI’ (end-of interrupt) com-
mand.

During normal operation only two operationsneed
to be performed onthe PIC:

1. Disabling (masking) and enabling interrupts
from a particular source. Thisis done by read-
ing the interrupt mask register (IMR) from lo-
cation 21H, using an AND or OR instruction to
set/clear particular interrupt mask bits.

2. Re-enabling interrupts for a particular level
when the ISR for that level complete. This
is done with the EOl command as described
above.

Masking/Enabling Interrupts

There are three places where interrupts can be dis-
abled: (1) the PICinterrupt mask, (2) the PIC priority
logic, and (3) the CPU’s interrupt enable flag.

If the PIC interrupt mask bit isset thentheinterrupt
reguest will not be recognized (or latched). If the PIC
believes an ISR for an higher level interrupt is still
executing dueto no EOl command having been given
for that interrupt level it will not allow interrupts of
thesameor lower levels. If theinterrupt enablebit in
the CPU’s PSW is not set then the interrupt request
signal from the PIC will be ignored.

Note that the CPU’sinterrupt enableflag iscleared

process returns from the ISR via the IRET instruc-
tion. This means that ISRs can’t be interrupted (not
even by ahigher-level interrupt) unlessinterrupts are
explicitly re-enabled in the ISR.

Interrupt routines should be kept as short as pos-
sible to minimize the interrupt latency (see below).
Typicaly thisinvolveshaving the | SR storevaluesin
a buffer or set flags and then having the bulk of the
processing performed outside the ISR.

It's possible to alow the CPU to interrupt an ISR
(resultingin nested interrupts) by setting theinterrupt
enable bit with the STI instruction.

Exercise: How many levels deep could interrupts be
nested on the IBM PC? In the worst case, how much space
would be required on the interrupted program’s stack to
hold the values pushed during the interrupt acknowledge
cycle?

Sample 8088/8259 | SR

The code below shows an 8088 assembly language
programthat includesan I SR. The program setsup an
ISR for interrupt number 8 (thetimer interrupt on the
IBM PC). The ISR simply decrements a count. The
main program waits until the count reaches zero and
then terminates.

The timer interrupt on the IBM PC isdriven by a
clock that generates one interrupt every 55 millisec-
onds. With theinitial count value provided below the
program waits for 15 seconds before terminating.

The main program saves and restores the previous
timer interrupt vector.

When the | SR begins executiononly thelPand CS
registers will have been initialized. Any other seg-
ment registers that will be used in the ISR must be
explicitly loaded. In thiscase the code and data areas
arelocated in the same segment so DS can be loaded
from CS.

On entry to the ISR only the IP, CS and PSW reg-
isterswill have been saved on the caller’s stack. Any
other registers used by the ISR must be saved when
starting the | SRand restored beforereturning. Other-
wisethe state of theinterrupted code will be changed
by the ISR and this is likely to cause seemingly-
random failuresin other programs.

when an interrupt happens and is restored when the

exanpl e of programusing an | SR for

I BM PC tiner interrupt nmov ax, cs set up DS
nov ds, ax
isrvec equ 4* (8+0) | ocation of vector for IR0 nmov ax, count
cnp ax, 0 don’t decrenent if already zero
code segnent public .COMfile setup jz isrl
assume cs: code, ds: code sub ax, 1 decrenment count
org 100h nmov count, ax
isrl:
start:
nmov ax, 0 use ExtraSegnent to access nmov al , 20h wite EO comrand to 8259 PIC
nmov es, ax vectors in segnent 0O out 20h, al to re-enable interrupts
save old interrupt vector nmov ax, t mpds restore working registers
nov ds, ax
nmov ax, es: [isrvec] nmov ax, cs: t npax
nmov prevoff, ax
nmov ax, es: [isrvec+2] iret return froml SR and
nmov prevseg, ax re-enable interrupts
set up new vector tmpax dw ?
t npds dw ?
cli ; disable interrupts unti
vector update is conplete code ends
end start

nov ax, of fset isr

nmov es:[isrvec], ax

nov ax, cs

nmov es: [isrvec+2], ax

sti ; re-enable interrupts

wait until | SR decrements count to zero

| oop: nmov ax, count

cnp ax, 0

jnz | oop

restore old interrupt vector

cli ; disable interrupts unti
vector update is conplete

nmov ax, prevof f restore prev.
nmov es:[isrvec], ax of f set/ segnment
nov ax, prevseg

nmov es: [isrvec+2], ax

sti ; re-enable

interrupts
return to DOS
int 20h

storage for denonstration program

count dw 273
prevoff dw ?
prevseg dw ?

The ISR itself:

isr:
nov cs: t npax, ax
nmov ax, ds
nmov cs: t mpds, ax

Exercise: Why mustinterrupts be disabled while updat-
ing the interrupt vector?

Exercise: How will the PC’s time of day change when
this program is run? What would happen if the interrupt
were not restored?

Exercise: Could a stack be used to save the values of
the registers that will be changed in the ISR? Which stack?
What are the advantages and disadvantages of doing so?

Interrupt Latency

Often a peripheral must be serviced within a certain
time limit after an event. For example, a character
must be read from an input port beforethe next on ar-
rives.

Theinterrupt latency isthe maximumtimetakento
respond to an interrupt request. Thiswill includethe
time it takes for the current instruction to complete
and the time for the CPU to respond to the interrupt
(e.g. push CS, IP and PSW, acknowledge the inter-
rupt and fetch the interrupt vector). If an ISR is al-
ready executing and cannot be interrupted then this
also increases the interrupt latency.

save working registers

