
ELEC 464 : MICROCOMPUTER SYSTEM DESIGN

1996/97 WINTER SESSION TERM 1

Programmable Logic Devices
The glue logic required to design a microcomputer system is typically implemented using programmable logic devices
(PALs, CPLDs and FPGAs). This lecture describes the structure of these three types of devices, their advantages and
disadvantages.
After this lecture you should be able to select and justify the choice of a programmable logic device based on: (1) the
complexity of the design; (2) maximum allowed propagation delay; (3) device cost; and (4) available development
tools. In future design problems you will be required to select an appropriate device to implement your solution.
You should also be familiar with basic PLD terminology including the terms PAL, CPLD, FPGA, OTP, sum of products,
CLB, LUT, netlist, and place-and-route.

1 Introduction

In recent years programmable logic devices (PLDs)
have all but replaced special-purpose logic devices
such as AND gates, flip-flops, counters, multiplex-
ers, etc. PLDs are chips that can be programmed, and
often re-programmed, to implement different logic
functions.

The main reason for using programmable logic is
to reduce total costs. This is due to a number of rea-
sons: One important advantage is that design with
PLDs is faster and this reduces the time required to
bring a product to market. Programmable devices
also reduce the risks associated with product devel-
opment since they allow last-minute changes, often
without having to redesign circuit boards. Since
PLDs often replace several other special-purpose de-
vices the design usually has fewer components and
this reduces PCB, assembly, test and repair costs.
Using PLDs also means fewer parts needs to be
stocked and this reduces inventory costs. Since more
of the logic is integrated into each chip the number
of interconnections is decreased and this increases
the reliability of the product.

Exercise: Name 5 advantages to using PLDs.

Of course, there are some disadvantages to using
programmable logic. Design with PLDs requires ad-
ditional development software and hardware which
is often very expensive. Design staff often need to
be trained to use new design tools. In addition, parts
must be programmed before they can be assembled
into a final product.

In spite of these disadvantages programmable
logic usually makes economic sense except for very
simple (e.g. bus buffers, latches, some decoders),

very complex (e.g. CPU), or very high-speed circuits
(e.g. DRAM controller). Even for one-of designs it’s
often easier to use PLDs if the development tools are
available.

Compared to ASICs (standard-cell or gate arrays)
PLDs offer lower NRE costs (zero vs tens of thou-
sands of dollars) , fast (1 hour vs several weeks) de-
sign turn-around, lower risk and simpler design tools.
On the other hand, ASICs will operate at higher
speeds and will be less expensive at very high vol-
umes (typically many thousands of parts).

2 PALs

A PAL (programmable array logic) is a pro-
grammable logic device in which each output is com-
puted as a two-level “sum of products” (an OR of
ANDs).

Modern PALs use a programmable “macro cell”
on each output. These macro cells contains a D
flip-flop and programmable switches (multiplexers)
that configure the macro cell as either a registered
or combinational output and as either a positive-true
or negative-true logic. Each of the first-level AND
(product) terms can be programmed to include any
combination of the inputs, the outputs, or their com-
plements. Each of the second-level OR (sum) terms
is connected to a fixed number of product terms
(AND gate outputs) (typically 8 to 12).

The advantages of the PAL architecture include
low and fixed (two gate) propagation delays (typi-
cally down to 5 ns), and simple, low-cost (free), de-
sign tools. However, the PAL architecture limits the
design to simple state machines and simple combi-
national circuits.

1

Modern PALs typically have EEPROM configura-
tion memories and are programmed with device pro-
grammers similar to EPROM programmers.

Because the applications tend to be limited to sim-
ple state machines and combinational circuits, PALs
are usually designed with a combination of truth ta-
bles, tabular state machine descriptions and boolean
logic equations. PLD languages such as PALASM,
ABEL or CUPL convert these descriptions to fuse
maps that are then used to program the devices.
These tools are often available free from PAL man-
ufacturers, usually come with target libraries that in-
clude that manufacturer’s products.

As an example, the following CUPL program de-
scribes the function of one output of an 18CV8 PAL
output using logic equations. Pins 1 and 2 are inputs
and pin 12 is an output:

Device p18cv8 ;

Pin 1 = A ;
Pin 2 = B ;
Pin 12 = x ;

x = A & !B # A & B ;

A B

x

Exercise: The grid in the diagram above shows the
possible connections between two inputs and their com-
plements and three 2-input AND gates. The 3-input OR
gate is connected to the output of the AND gates to create
a sum-of-products output.

Mark the intersections in the grid that represent connec-
tions that would have to be made to implement the logic
equation described by the program above.

How can you create a don’t-care input to the OR gate?

What is the maximum number of product terms that can

be included in the equation for the output ‘x’ in the above

architecture?

EEPROM-configured PALs are programmed with
device programmer (similar to EPROM program-
mer).

An typical example of a PAL is the AMD
PALCE20V10. This 24-pin chip contains 10 pins
connected to outputs of macro cells, 11 dedicated in-
puts and one input which can be used as a the clock
for a total of 22 possible inputs.

Exercise: How many inputs (columns) will be available

to each AND gate in the AND matrix for a 20V10?

PALs range in price from about $2 - $15 depend-
ing on the number of macro cells and required prop-
agation delay.

3 CPLDs

Since the number of possible interconnections in a
PAL grows as the product of the number of inputs
and outputs it’s desirable to use other architectures
as the number of possible variables in each term ex-
ceeds about 10.

There are a number of PLD architectures, typi-
cally called CPLDs, (complex programmable logic
devices) that combine larger numbers of sum-of-
product macrocells into structures that allow a
smaller number of input/output pins to be be used
as inputs to the product terms. CPLDs also typi-
cally allow the macrocells to select between two or
more flip-flop clock sources. The following diagram
shows a typical CPLD architecture:

The advantage of CPLDs is that more complex de-
signs can be implemented. Propagation time is only
slightly worse than an equivalent-process PAL due to
one extra set of programmable interconnections.

As with PALs, CPLDs have an internal configura-
tion memory (typically EEPROM) and are also pro-
grammed with device programmers.

2

Smaller CPLDs can be designed with logic lan-
guages such as ABEL or CUPL but larger CPLDs
are typically designed using schematic capture (us-
ing a CAD program to prepare schematics) or even
through synthesis from HDLs such as VHDL.

A typical CPLD is the Cypress CYC372. This de-
vice, as shown above, contains 64 macrocells and 32
I/O pins in a 44-pin package with an overall propa-
gation delay of 10 ns.

Typical CPLDs cost between $5 - $50 depending
on the number of macrocells, the speed and the pack-
age.

4 FPGAs

FPGAs (Field-Programmable Gate Arrays) are PLDs
with large numbers of small macro-cells each of
which can be interconnected to only a few neighbor-
ing cells. A typical FPGA might have 100 cells, each
with only 8 inputs and 2 outputs. The output of each
cell can be programmed to be an arbitrary function
of its inputs. FPGAs typically have a large number
() of I/O pins.

FPGA architectures vary in the complexity of their
individual cells (simple cells are “fine-grained” and
complex cells are “coarse-grained”) and the flexi-
bility of the interconnections between cells (“rout-
ing resources”). Simple cells are arranged as sim-
ple ROM-like look-up tables (LUTs) while more
complex cells such as the Xilinx CLBs (Config-
urable Logic Blocks) can include more specialized
logic such as carry look-head generators for high-
speed adders and may include multiple levels of logic
within the cell.

A typical FPGA is the Xilinx XC4003. The
XC4000 family is a coarse-grained architecture in
which each CLB has 2 sets of 4 inputs, a second
level of logic to combine the two intermediate out-
puts and 2 registered outputs. The XC4000 CLBs
also includes features for efficient arithmetic pro-
cessing. The following diagram shows the structure
of a Xilinx CLB:

while the following shows how CLBs can be con-
nected to their “neighbors”:

FPGAs are ideal for designs that require large
amounts of logic since it’s possible to integrate mul-
tiple storage registers, arithmetic and logic circuits,
controllers, etc. on the same device.

One disadvantage of FPGAs is the relatively large
propagation delays. To complicate things, these de-
lays are hard to predict before the circuit design is
finished. This is due to the need to route signals
through multiple levels of logic and interconnection
blocks. Typical RAM-based FPGA circuits will have
propagation delays of 20 to 50 ns.

Another disadvantage of FPGAs is the expensive
($3000 and up) and slow design software. FPGAs
are typically designed using either schematic cap-
ture or HDLs. This is typically done with third-party
tools (e.g. Viewlogic schematic capture or Synopsys
FPGA Compiler). These tools then output netlists

3

(lists of gates or cells and how they are to be logi-
cally interconnected). The components in the netlist
must then be assigned to specific cells on the device
and the routing between cells laid out. This “place
and route” process is a complex optimization prob-
lem which typically includes constraints on propaga-
tion delay and the number of cells used.

Although [E]EPROM and OTP (one-time pro-
grammable) FPGAs are available, the most popular
designs use RAM to store their configuration. The
device’s configuration RAM thus has to be loaded
each time it is powered up. Stand-alone designs can
load their configuration from serial EPROMS while
FPGAs in larger circuits can be loaded from another
device such as a microprocessor.

It should be noted that OTP fuse-based FPGAs are
considerably faster than RAM-based FPGAs because
signals have to propagate through fewer gates.

FPGAs cost between $10 and $300 depending on
the number of cells, pins and speed.

Summary

The following table summarize some of the differ-
ences between the different types of PLDs. Note
that the values quoted below are approximate and
change continuously as newer technology becomes
available.

Device PAL CPLD FPGA
cost $2 - $15 $5 - $50 $10 – $300
macro-cells 8–10 32 – 128 100 – 1000
pins 20 – 24 44 – 160 84 – 256
prop. delay (ns) 5 5-10 per CLB
clocks 1 2 – 4
typical device AMD 22V10 Cypress 7C372 Xilinx 4003
configuration EEPROM EEPROM RAM or OTP
design boolean HDL or HDL or

equations schematic schematic

4

