
ELEC 464 : MICROCOMPUTER SYSTEM DESIGN

1996/97 WINTER SESSION TERM 1

The Intel 8088 Architecture and Instruction Set
This lecture describes a subset of the 8088 architecture and instruction set. While it’s not possible to cover all the
details of the 8088 in one lecture you should learn enough about the 8088 to be able to:

write simple program in 8088 assembly language including: (1) transfer of 8 and 16-bit data between registers
and memory using register, immediate, direct, and register indirect addressing, (2) some essential arithmetic and
logic instructions on byte and 16-bit values, (3) stack push/pop, (4) input/output, (5) [un]conditional branches,
(6) call/return, (7) interrupt/return, (8) essential pseudo-ops (org, db, dw).

compute a physical address from segment and offset values,

describe response of 8088 to NMI, software (INT) and external (IRQ) interrupts and return from interrupts.

History

The original Intel 16-bit CPU was the 8086. It was
designed to be backwards-compatible at the assem-
bler level with Intel’s 8-bit CPU, the 8080. The 8088
is a version of the 8086 with an 8-bit data bus. The
8088 was used in the original IBM PC and its many
clones. Later versions of the 8086 include the i386
which extends the data and address registers to 32
bits and includes support for memory protection and
virtual memory.

Registers

The 8088 includes has four 16-bit data registers (AX,
BX, CX and DX). BX can also be used as an address
register for indirect addressing. The most/least sig-
nificant byte of each register can also be addressed
directly (e.g. AL is the LS byte of AX, CH is MS
byte of CX).

Three bits in a 16-bit program status word (PSW)
are used to indicate whether the result of the previ-
ous arithmetic/logical instruction was zero, negative,
or generated a carry. An interrupt enable bit controls
whether interrupt requests on the IRQ pin are recog-
nized.

The address of the next instruction to be executed
is held in a 16-bit instruction pointer (IP) register (the
“program counter”).

Exercise: How many bytes can be addressed by a 16-

bit value?

A 16-bit stack pointer (SP) is used to imple-
ment a stack to support subroutine calls and inter-

rupts/exceptions.
There are also three segment registers (CS, DS,

SS) which are used to allow the code, data and
stack to be located in any three 64 kByte “segments”
within a 1 megabyte (20-bit) address space as de-
scribed below.

Instruction Set

Data Transfer

Transfer of 8 and 16-bit data is done using the MOV
instruction. Either the source or destination has to
be a register. The other operand can come from an-
other register, from memory, from immediate data (a
value encoded in the instruction) or from a memory
location “pointed at” by register BX. For example, if
COUNT is the label of a memory location the fol-
lowing are possible:

; register: move contents of BX to AX
MOV AX,BX

; direct: move contents of AX to memory
MOV COUNT,AX

; immediate: load CX with the value 240
MOV CX,0F0H

; register indirect: move contents of AL
; to memory location in BX

MOV [BX],AL

16-bit registers can be pushed (SP is first decre-
mented by two and then the value stored at SP) or
popped (the value is restored from memory at SP and
then SP is incremented by 2). For example:

PUSH AX ; push contents of AX
POP BX ; restore into BX

1



I/O Operations

The 8088 has separate I/O and memory address
spaces. Values in the I/O space are accessed with
IN and OUT instructions. The port address is loaded
into DX and the data is read/written to/from AL or
AX:

MOV DX,372H ; load DX with port address
OUT DX,AL ; output byte in AL to port

; 372 (hex)
IN AX,DX ; input word to AX

Arithmetic/Logic

Arithmetic and logic instructions can be performed
on byte and 16-bit values. The first operand has to
be a register and the result is stored in that register.

; increment BX by 4
ADD BX,4

; subtract 1 from AL
SUB AL,1

; increment BX
INC BX

; compare (subtract without storing result)
CMP AX,MAX

; mask in LS 4 bits of AL
AND AL,0FH

; shift AX right
SHR AX

; set MS bit of CX
OR CX,8000H

; clear AX
XOR AX,AX

Control Transfer

Conditional jumps transfer control to another address
depending on the state of the flags in the PSW. Con-
ditional jumps are restricted to a range of -128 to
+127 bytes from the next instruction while uncondi-
tional jumps can be to any point within the 64k code
segment.

; jump if last result was zero (two values equal)
JZ skip

; jump on less than
JL smaller

; jump if carry set (below)
JC neg

; unconditional jump:
JMP loop

The CALL and RET instructions call and return
from subroutines. The processor pushes IP on the

stack during a CALL instruction and the contents of
IP are popped by the RET instructions. For example:

CALL readchar
...

readchar:
...
RET

Interrupts and Exceptions

In addition to interrupts caused by external events
(such as an IRQ signal), certain instructions such as
a dividing by zero or the INT instruction generate
exceptions.

The 8088 reserves the lower 1024 bytes of mem-
ory for an interrupt vector table. There is one
4-byte vector for each of the 256 possible inter-
rupt/exception numbers. When an interrupt or ex-
ception occurs, the processor: (1) clears the interrupt
flag in the PSW, (2) pushes PSW, CS, and IP (in that
order), (3) loads IP and CS (in that order) from the
appropriate interrupt vector location, and (4) trans-
fers control to that location.

For external interrupts (IRQ or NMI) the interrupt
number is read from the data bus during an interrupt
acknowledge bus cycle. For internal interrupts (e.g.
INT instruction) the interrupt number is determined
from the instruction.

The INT instruction allows a program to generate
any of the 255 interrupts. This ”software interrupt”
is typically used to access operating system services.

Exercise: MS-DOS programs use the INT 21H instruc-

tion to request operating system services. Where would

the address of the entry point to these DOS services be

found?

The CLI and STI instructions clear/set the
interrupt-enable bit in the PSW to disable/enable ex-
ternal interrupts.

The IRET instruction pops the IP, CS and PSW
values from the stack and thus returns control to the
instruction following the one where interrupt or ex-
ception occurred.

Pseudo-Ops

A number of assembler directives (“pseudo-ops”) are
also required to write assembly language programs.
ORG specifies the location of code or data within the

2



segment, DB and DW assemble bytes and words of
constant data respectively.

Segment/Offset Addressing

Since address registers are only 16 bits wide they are
always used together with with one of the segment
registers to form a 20-bit address. This is done by
shifting the segment register value left by 4 bits be-
fore adding it to the address register. DS (data seg-
ment) is used for data transfer instructions, CS (code
segment) is used with control transfer instructions,
and SS is used with the stack pointer.

Exercise: If CX contains 1122H, SP contains 1234H,

and SS contains 2000H, what memory values will change

when the PUSH CX instruction is executed?

The use of segment registers reduces the size of
pointers to 16 bits. This reduces the code size but
also restricts the addressing range of a pointer to
64k bytes. Performing address arithmetic within data
structures larger than 64k is awkward. This is the
biggest drawback of the 8088 architecture.

We will restrict ourselves to short programs where
all of the code, data and stack are placed into the
same 64k segment (i.e. CS=DS=SS).

Byte Order

When multi-byte values are stored in memory the
bytes are stored with the least-significant byte at
the lowest memory location (so-called “little-endian”
format). This is the opposite of the “big-endian” or-
der used by Motorola processors.

Exercise: If memory locations 1000 and 1001 have

values 01 and 02, what value will be loaded into AX if the

16-bit word at address 1000 is loaded into AX?

8088 Assembly Language

The operand format is destination,source, e.g.
MOV AX,13H loads AX with 19.

The assembler keeps track of the type of each sym-
bol and uses it select immediate or direct addressing.
This can be changed by using the OFFSET operator
to convert a memory reference to a 16-bit value. For
example:

MOV BX,COUNT ; load value of COUNT
MOV BX,OFFSET COUNT ; load location of COUNT

Hex and binary constants are indicated by using an
H or B suffix after the number. A leading 0 must be
added if the first digit of a hex constant is not a digit.

Example

This is a simple program that demonstrates the main
features of the 8088 instruction set. It uses the INT
operation to invoke MS-DOS to write characters to
the screen.

; Sample 8088 assembly language program. This program
; prints the printable characters in a null-terminated
; string (similar to the unix ("strings" program).

; There is only one "segment" called "code" and the
; linker can assume DS and CS will be set to the right
; values for "code". The code begins at offset 100h
; within the segment "code" (MS-DOS .COM files).

code segment public
assume cs:code,ds:code
org 100h

start:
mov bx,offset msg ; bx points to string

loop:
mov al,[bx] ; load a character into al
cmp al,0 ; see if it’s a zero
jz done ; quit if so
cmp al,32 ; see if it’s printable
jl noprt ; don’t print if not
call printc ; otherwise print it

noprt:
inc bx ; point to next character
jmp loop ; and loop back

done:
int 20h ; return to DOS

; subroutine to print the byte in al

printc:
push ax ; push ax and dx
push dx
mov dl,al ; use DOS to
mov ah,02H ; print character
int 21H
pop dx ; restore ax and dx
pop ax
ret

msg db ’This’,9,31,32,’is’,20H,’a string.’,0

; example of how to reserve memory (not used above):

buf db 128 dup (?) ; 128 uninitialized bytes

3



code ends
end start

4


