
ELEC 464 : MICROCOMPUTER SYSTEM DESIGN

1996/97 WINTER SESSION TERM 1

Parallel I/O Ports
This lecture covers the design of parallel I/O ports. These simple ports are used to interface the CPU to I/O devices.
After this lecture you should be able to: (1) design simple input, output and bidirectional I/O ports using registers,
tri-state buffers and and open-collector buffers; and (2) write 8088 assembly language programs to read and write the
individual bits of an I/O port.

I/O Ports

All useful microcomputer systems have input/output
(I/O) devices. These I/O devices move data between
the outside world and the computer. The interface
between the CPU and these I/O devices is through
registers in the address or I/O space of the processor.
Through these registers the CPU can input (read) or
output (write) a number of bits (typically a byte) at a
time.

Typical examples of I/O port include output ports
that drive LEDs, ports to scan a keypad, ports to
control machinery, etc. More complex I/O inter-
faces such as floppy disk controllers or serial inter-
face chips usually contain several I/O ports. Some
ports are used to obtain status information about the
interface through “status registers” and other ports
can control the interface’s operation through “control
registers.”

For example, each printer interface on the IBM PC
has associated with it a status port that can be used to
obtain certain status information (busy, on-line, out
of paper, etc). The printer interface also has a con-
trol port that can be used to reset the printer and set
the automatic line feed mode. In addition, there is an
output port that is used to output the character to be
printed.

Implementation of I/O Ports

Output

Output ports are implemented using registers – multi-
bit flip-flops with a common clock. The register’s
data inputs (D) are connected to the CPU data bus and
the register’s clock input is driven by the CPU write
strobe (WR*). In addition, an address decoder is used
to make sure the clock is only asserted when the CPU
is addressing the desired IO or memory address. The

rising edge of the write strobe loads the data into the
register output (Q) and this output stays fixed until the
register is written again.

The following schematic shows how a register
could be connected to operate as an output port. The
CPU’s write strobe (WR*) is used to clock the data
into the register, but only if the address on the CPU
bus corresponds to the address of the output port:

address

data

address
decoder

D Q

WR*

CS*

8 8

IO/M*

The following timing diagram shows the relation-
ship between the signals. Note that the output is held
after the rising edge of the write strobe (WR*):

data

Q

CS*

WR*

Input

Input ports can also be implemented with a minimum
of hardware. A tri-state buffer is used to connect the
external digital input to the CPU’s data bus during a
read cycle if the CPU is addressing the memory or IO
address assigned to the input port. The read strobe
(RD*) is used to enable the buffer so that it connects
the input to the CPU data bus.

1

The following schematic shows how a register
could be connected to operate as a parallel input port.
The CPU’s inverted RD* strobe (RD) is used to en-
able the output of a tri-state buffer when RD is active
and the address corresponds to the address of the in-
put port:

CPU data

address address
decoder

parallel
 input

RD

oe

8 8

IO/M*

The value read by the CPU will be the value on the
input port at the time that the IN (if I/O mapped) or
MOV (if memory-mapped) instruction is executed.
This type of input port samples the value of the input
at the time the instruction is executed.

Bi-Directional I/O Ports

By using open-collector outputs on an output port it’s
possible to use the same signal pins for both input and
output. The open collector outputs are driven high by
pull-up resistors and can be driven low by either the
output port or by an external device. An input port is
attached to these lines. The state of the I/O interface
lines can be read by reading the input port.

Exercise: To what value must the outputs be set in or-

der to be able to read from an external device?

Address and I/O Decoding

The design of address decoders for I/O ports is simi-
lar to the design for memory systems. A typical an
I/O interface will only require a few (typically less
than 16) ports (addresses). On some CPUs (such as
the 8088) there are separate I/O and memory address
spaces. In this case the decoder must enable the port
only for the appropriate address space.

Software Aspects

The value on the output port is set with MOV (if
the port is memory-mapped) or OUT (if the port is

mapped into the I/O space) instructions. Similarly,
the value on an input port is read with a MOV or IN
instruction.

It’s often necessary to set or clear a particular bit
on an output port or to test the value of a particular
bit on an input port. This can be done with bit masks
and the bit-wise logical operations AND and OR.

To set a particular bit(s), the current output value
is OR’ed with a bit-map which contains 1’s in the
bit positions to be set. To clear a particular bit(s),
the current output value is AND’ed with a bit-map
which contains 0’s in the bit positions to be cleared.
To test the value of a particular bit, the input value is
ANDed with a bit-map which contains 1’s in the bit
position(s) to be tested.

in al,60H ; read from I/O port at 60H
and al,80H ; test MS bit
or al,07H ; set LS 3 bits
and al,0BFH ; clear bits 5 and 4
out 70H,al ; write to I/O port at 70H

Often it’s not possible to read the value written to
an output port. If individual bits need to be changed,
it’s necessary to store the output value to RAM each
time it’s changed and then obtain the current output
value from RAM.

For example, the following code clears the LS bit
of a value that is being output to an 8-bit output port
which is IO-mapped at port 80H. In this case the port
is output-only so a copy of the output value is kept in
the RAM memory location ‘outval’.

mov al,outval
and al,0FEH,
out 80H,al
mov outval,al

Exercise: The status port for a serial interface chip is

located at I/O port 55H. Bit 2 (bits are usually numbered

from 0 starting with the LS bit) will have the value 1 if a re-

ceived character is available to be read (from another port

on the chip). Write a section of 8088 assembly language

code that checks to see if there is a character ready to be

read.

2

