
ELEC 464 : MICROCOMPUTER SYSTEM DESIGN

1996/97 WINTER SESSION TERM 1

Assignment 8
Due November 19, 1996

Introduction

You will program, assemble and test a
microcomputer-based controller for a pedes-
trian crossing traffic light. The controller must
operate according to the specifications given below.
You will be supplied with parts that you will use to
build the system. You will write the control program
in C and program the microcontroller using a device
programmer. You will hand in a programmed
device and a program listing. The TA will use your
programmed controller chip to test your design.

Specifications

Inputs and Outputs

The controller has one input, a switch that the pedes-
trian uses to request that the lights change. The con-
troller has five outputs that drive five LEDs that simu-
late the traffic lights: red/yellow/green lights for con-
trolling the traffic and red/green lights for the pedes-
trian crossing.

Start-Up Behaviour

When your controller is turned on it should go
through a diagnostic sequence similar to that given
in the example code. This will help you verify that
all the inputs and outputs are properly connected and
also allows you to ‘sign’ your chip in case it gets
mixed up with other groups’ chips.

This diagnostic routine cycles through a set of pat-
terns on the LEDs at the rate of one pattern per sec-
ond until the switch is pressed. The patterns are: all
LEDs on, all LEDs off, followed by a sequence of
2 patterns which depend on your assignment group
number. These last two patterns should be the binary
representation of the two digits of your group num-
ber (this is “binary coded decimal”, or BCD). The
binary value of each digit is displayed on the 4 LEDs

connected to P1.7 (MS bit) through P1.4 (LS bit).
See the example code for more details. You must
change these two patterns to the ones for your group
number.

The first time the button is pressed the traffic light
control behaviour should start. The initial state of
your controller should have the traffic light green and
the pedestrian light red.

Traffic Light Behaviour

The controller should behave like the traffic lights
used at pedestrian crossings in Vancouver. However,
the delays will be shorter to allow the design to be
tested more quickly.

If the “crossing request” button has been pushed at
any time since the previous time the pedestrian light
turned green then the lights go through the following
sequence:

The traffic light turns yellow for 1 second.

The traffic light turns red and the pedestrian
light turns green for 1 second.

The pedestrian light turns red for 2 seconds.

The traffic light turns green.

The traffic light must stay green for at least 5
seconds regardless of whether the button has
been pushed or not.

Any button push of 10 ms or more must be de-
tected (you may also capture shorter button pushes).

Components

You will be supplied with all the parts required ex-
cept for a solderless breadboard and two 1.5 V bat-
teries which you must supply.

1



Microcontroller

You will use an ATMEL 89C1051 microcontroller.
The data sheets are available in PDF format from
http://www.atmel.com/atmel/acrobat/doc504.pdf.
The first three pages are probably all you’ll need to
refer to.

The controller has two 8-bit parallel I/O ports, P1
and P3. Both ports are bidirectional and have inter-
nal pull-ups. In the descriptions below the notation
P refers to bit of the 8-bit parallel port .
can be 1 or 3 (P1 or P3) and is 0 to 7.

Other Parts

You will also be supplied with the following compo-
nents:

an envelope marked with the group number and
the names of the group members. It contains the
parts described above. Keep the envelope and
use it to hand in the components when finished
with the assignment.

an 11.059 MHz crystal that must be connected
between pins 4 and 5 (XTAL2 and XTAL1 re-
spectively). The crystal determines the CPU’s
clock frequency.

two 27 pF capacitors that must be connected
from each of pins 4 and 5 to ground. These are
required for the oscillator to start reliably.

a 0.1 F capacitor that must be connected from
Vcc to pin 1 (ReSeT). This drives the reset input
high for a short time when power is first applied
and resets the processor.

five LEDs (two red, one yellow, two green).
These are used to simulate the traffic lights.

five 150 (or 120) ohm current-limiting resistors
to be connected in series with the LEDs.

wire to hook up two 1.5 volt batteries in se-
ries between pin 20 (Vcc) and pin 10 (ground).
You must supply the batteries and devise some

Some groups who were late registering may have to use an
89C2051. The two devices differ only in the amount of EPROM
available and the on-chip peripherals available. Either device
can be used for this project.

method to connect them in series (rolling them
in a paper tube and using tape and an elastic
band to hold it all together seems to work).

You should also use two short pieces of these
wires to make a “switch” that temporarily con-
nects pin 6 (P3.2) to ground. Connect short
(3 cm) wires to P3.2 and to ground and leave
stripped ends sticking out so they can be shorted
together temporarily.

Circuit Description

Important: You must connect the switch and LEDs
to the correct pins or your microcontroller will not
work properly in the TA’s test circuit and you will
receive a low mark.

LED Drivers

Read the warning below. Use the following circuit to
drive each LEDs:

+3 V

15
0 

oh
m

s
Pn.m

anode

cathode

+

In order for your circuit to be compatible with the
TA’s test hardware you must drive the LEDs with the
following pins:

Pin Port Colour Purpose
19 P1.7 Red Traffic Stop
18 P1.6 Yellow Traffic Warning
17 P1.5 Green Traffic Go
16 P1.4 Red Pedestrian Stop
15 P1.3 Green Pedestrian Go

WARNINGS

The LEDs must be forward-biased: the anode must
be more positive than the cathode. Reverse-biasing
the LEDs will destroy them immediately. The lead
on the flat side of the LED is the cathode (i.e. nega-
tive).

2



The LEDs must be connected in series with a re-
sistor to limit the current through the LED.

Semiconductor devices can be damaged by static
electricity. The damage is invisible and can be cu-
mulative. Ideally you would work on a bench with
grounding straps and anti-static surfaces. Since this
equipment is not available you should take common-
sense precautions such as touching a grounded piece
of equipment before handling the chip and avoiding
touching the pins.

Assembling the Circuit

A schematic of the circuit is given below:
0.1 uF

RST
P3.0
P3.1
XTAL2
XTAL1
P3.2
P3.3
P3.4
P3.5
GND

Vcc
P1.7
P1.6
P1.5
P1.4
P1.3
P1.2
P1.1
P1.0
P3.7

3V

11MHz

27pF

27pF

R
Y
G
R
G pe

d.
LE

D
s

tr
af

fic
LE

D
s

crossing 
 request

You’ll find it convenient to use a bus strip (the ver-
tical strips) on the right side of the breadboard for
Vcc and the one on the left side for ground. Note
that the bus strips on many breadboards are discon-
nected half-way down the board.

Plug the chip into the breadboard.

Attach LEDs between the Vcc terminal strip
and free terminal rows. Make sure the LED po-
larity is correct.

Use the resistors to connect LEDs to the correct
output pins on the microcontroller.

Attach the 0.1 F capacitor from Pin 20 to Pin1.

Attach the crystals and 27 pF capacitors to Pins
4 and 5.

Make a switch using wire.

Make sure the chip is properly connected to
both Vcc and ground rails. Reverse biasing the

chip or it’s inputs will destroy the chip. Double
check your connections before applying power.

Programming the Microcontroller

You should first program the microcontroller with
the example code available on the course Web site.
This will allow you to check that your hardware op-
erates properly.

You will use the device programmer attached to
the PC at one end of Room 322. Please use this com-
puter only for programming the devices and do not
store any files on this computer’s hard disk. The lab
is open during the day but is often in use for other
courses. Please use this lab only for programming
your chip and avoid disturbing the other users.

The programmer has ZIF (zero insertion force)
socket. Flip the lever to open the contacts, insert the
chip into the programmer and flip the lever back to
hold the device in the socket. Be careful to follow the
chip alignment diagram drawn beside the socket (the
bottom of the chip should be aligned with the bottom
of the socket).

The PC has been configured to start up the device
programmer software when it boots up (the program
it runs is C:\PRGRMR\ACCESS.EXE).

The device programmer software is menu-driven.
Select the following options:

Device MPU/MCU
MFR Atmel
Type AT89C1051 (or AT89C2051)

This will start a second program that is specific
to the 8051 microcontrollers. First select option
2 “Load Hex”. Enter the name of your file (e.g.
A:ASG8.HEX). Select the options for Intel hex for-
mat and to set unused bytes to FF. Then select option
“A” to automatically erase, blank check, program and
verify. Select the option to not program any lock bits.

It will take a few seconds for the device to be pro-
grammed. You may remove the device when the
”Done” LED on the programmer goes on.

Compiling your Code

You will use a free (demo version) of a C cross-
compiler for the 8051 that runs under MS-DOS.

3



Copy the file ˜elec464/51demo.exe (about
800 kBytes) to a floppy disk (the file can also be
downloaded from the course Web page). Copy it to
any convenient directory on a DOS machine and ex-
ecute it to unpack the demo compiler. You will need
about 2 Megabytes of free disk space.

Type the command bin\hpd51 to start the in-
teractive editor/compiler environment. There is no
command-line version.

Define A Project

You should start by defining a project so that you do
not have to re-enter the compiler options each time
you start the compiler.

From the main menu select the menu item “New
Project” from the “Make” project. You will be pre-
sented with a series of dialog boxes:

Project Name

Enter a project name, for example asg8.

Processor and Memory Model

select:

– Generic 8051

– Small memory model

Output File Format

select:

– Intel HEX

ROM and RAM Addresses

Set all RAM and ROM addresses and sizes to
zero (0).

Compiler Optimizations

select:

– Full Optimization (press ‘F’)

– Global Optimization level: 1

Source Files

Add the name of your C file to the list, for ex-
ample, asg8.c.

select DONE (press Esc)

Edit/Compile/Link

Enter your source code in the edit window. You
may want to start with the sample code. Select the
“Make” item from the “Make” menu or press F5.
Correct any errors, and re-run the make command
as necessary. Make sure the code does not take up
more than 1k Bytes and the internal RAM (IRAM)
does not take more than 64 bytes.

The object code will be written to a file in “Intel
Hex” format. This is one of several formats that are
commonly used to transfer data to device program-
mers.

Copy the resulting hex file (e.g. asg8.hex) to a
floppy and use it to program the microcontroller as
described above.

Submitting Your Assignment

Return the parts in the envelope provided along with
a listing of your C code. You must return all the parts
to get a mark for the assignment. Your controller
will be tested by plugging the programmed chip you
submit into a test circuit and checking that the device
displays the correct power-on signature and operates
according to the specifications.

Bonus Feature

To get a possible 10% extra on this assignment you
can adding a blinking feature to your design so that:

1. when the traffic light is green it blinks on and
off at about 2 blinks per second (2 Hz), and

2. when the pedestrian light is red and the traffic
light is red the pedestrian light blinks on and off
at about 2 Hz

Hint: keep a backup copy of your most recent
known-good code in case you run out of time.

4


