Lecture 18 - Voice Over IP

Exercise 1: Why can't the speech and video stream be transmitted using only UDP? Why might we want to avoid transmitting them over TCP?

Exercise 2: How many bytes of header overhead are added to each packet assuming the smallest possible IP, UDP and RTP headers? If 64 kb/s PCM is being transmitted in 20 ms frames, what is the total data rate, including both headers and speech data? What fraction of that is for headers?

IP: 45:
$$5 \times 4 = 20$$
 bytes for IP

UDP: 2×32 bits: 8 bytes for UDP

RTP: 11
 8 bytes for ETP

 36 bytes $= headers$
 $20 \text{ ms} \times 64 \text{ kb/s} = 160 \text{ bytes} - payload$

each packed is 196 bytes ; $rate = \frac{196 \times 8}{20 \times 0^{-3}} = 78 \text{ kb/s}$.

ovalud i $\frac{76-64}{76} = \frac{14}{28} \approx 18\%$ ovalued.

Exercise 3: Assuming the minimum header lengths, which has less overhead, TCP or RTP?

difference =
$$5 \times 4$$
 bytes for $TCP - 2 \times 2$ bytes for $TCP - 2 \times 2$ bytes for a 196 byte pecked.

Exercise 4: If the sample rate is 8 kHz and each sample is quantized with 8 bits, what is the bit rate in each direction?

Exercise 5: What is the maximum bandwidth and the bit rate if the sampling rate is 16 kHz and there are 10 bits per sample?

Exercise 6: Why can't trunks be bidirectional?

trunks are long & high loss & need to amplify signal in both directions (this is difficult with full-duplex links)

