
ELEX 4550 : Wide Area Networks
2014 Winter Session

HTTP

is lecture gives an overview of HTTP, a typical application-level protocol. HTTP, Hypertext Transfer Protocol, is the
application-level protocol used to retrieve hypertext information (“web pages”) from a “web server”.
Aer this lecture you should be able to: parse a URL URI into its components, URL-encode an arbitrary string, parse a
media (MIME) content type into its components, generate the text for an HTTP 1.1 request given the URL and header
values, generate the text for an HTTP response given the content and header values, and add A and B HTML tags to text
to create a hypertext document.

Introduction

is lecture describes, HTTP, Hypertext Transfer
Protocol. HTTP is the protocol used to retrieve hy-
pertext (usually HTML) and other documents from
a server. We will study HTTP because it is similar to
many other IP application protocols such as:

• FTP (File Transfer Protocol) - used to transfer files
• SMTP (Simple Mail Transfer Protocol) - used to

send mail to a mail server
• IMAP (InternetMessageAccess Protocol) andPOP

(PostOffice Protocol) - used to retrieve e-mail from
a server

• SIP (Session Initiation Protocol) - a signalling pro-
tocol used to set up voice and video calls

Web browsers are one of the most popular Internet
applications. A browser displays hypertext. Hyper-
text is text that has been combined with “markup”
instructions that allow the reader to follow “links”
to other resources, including other hypertext docu-
ments.

Application Protocol Overview

All of these protocols work in a similar fashion. A
client application establishes a TCP connection to
a server and sends a request. e server responds
with a result code and the requested data. e re-
quest/response sequence is repeated (typically, but
not always, using the same TCP connection) until the
client or server terminates the session with an appro-
priate request/response or by closing the TCP con-
nection.

e messages exchanged between the client and
server are lines of text, each terminated with a CR-

LF pair. Each request or response typically consists
of one line in a protocol-specific format followed by a
sequence of header lines. A request or response of-
ten includes data and a blank line is used to sepa-
rate the headers from the data. e header lines typ-
ically consist of a header name, a colon and header-
specific data. e data is terminated in a protocol-
specific manner (e.g. a terminator line or reaching a
byte count specified in a header).

For example the request for a web page might in-
volve the client setting up a TCP connection to the
server and sending the following three lines:

GET /about/ HTTP/1.1
Host: www.bcit.ca

where the line with GET is the request, the line with
Host: is a header and the blank line terminates the
request.
Exercise 1: What might be some advantages and disadvan-

tages of using text-based protocols?

URIs and URLs

URI and URLs are syntax used to identify resources
which are typically, but not always, files that can be
retrieved over the Internet. URIs and URLs are de-
fined in RFC 3986.

e syntax of a URI is:

scheme ":" hier-part ["?" query] ["#" fragment]

A URL is a specific type of URI. e format of a
URL is:

scheme://domain:port/path?query_string#fragment_id

lec23.tex 1

e fields are:

scheme - oen called the protocol, this defines both
the syntax of the rest of the URL and, in most cases
the IP protocol used to retrieve the information
(e.g. http, p, etc)

domain - this is the host or IP address

port - the TCP port number (defaults to well-known
values)

path - the (virtual) location of the resource on the
server

query - additional data to be passed to the web
server, typically a something specific to this request
such as text to be searched for

fragment - the portion of the requested document,
typically a section in a document

Exercise 2: Parse the URL:

https://bcit.ca:85/files/public/?bydate#first-end

e web client uses the domain and port informa-
tion to set up a connection to the server but the server
interprets the remainder of the URL (possibly includ-
ing the domain domain) as it sees fit.

e server typically also has access to additional in-
formation supplied by the client in protocol headers
(IP, TCP or HTTP) such as the IP address, “cookies”
and the history of previous requests. is means that
the server’s response to a particular query could de-
pend on many factors, not just the URL itself.

URL Encoding

As shown in the above syntax, various characters (/,
:, ?, #) are used to separate the URL into its parts and
thus cannot be used within the URL.

Escape sequences beginning with the percent (%)
character are used to include these special characters
inURLs. e escape character is followed by two hex-
adecimal digits which define the value of the charac-
ter. e byte sequence can also be a UTF-8 encoded
string.
Exercise 3: URL-encode the string Hi's?, escaping all charac-

ters other than letters.

Content Types

Resources retrieved over HTTP can be of different
types (text, photographs, audio, etc) and each of these
can be encoded differently. For example, a text docu-
ment can be a plain text file or containHTMLmarkup
or be in a particularMicrosoWord format. e pix-
els in a photograph can be encoded in various ways
(raw pixel values, JPEG compression, ...).

ere is a (sort of) standard for describing the con-
tent of a resource. e content type (also called a
MIME type) is two strings separated by a slash. e
first part specifies the media type and the second
specifies how it is encoded. Examples of content types
include:

• text/html - text using HTML markup
• text/plain - plain text
• video/x-flv - Flash video
• video/mp4 - MP4 compressed video
• application/octet-stream - arbitrary data generated

by an application
• application/pdf - a document in PDF format that

may contain other media types
• application/zip - a zip archive file

Exercise 4: What might the content-type text/csv mean?

HTTP Protocol

HTTP is defined in various RFCs. e most
commonly-used version, HTTP 1.1, is defined in
RFC 2616.

e HTTP protocol follows the general Internet
application protocol described above.

e HTTP request consists of an initial line with
the request type (most oen GET, but can also be
PUT, POST and others), additional header lines, a
blank line to terminate the headers and then the data
(if required by the request, for example, for POST re-
quests).

For HTTP version 1.1 GET request only one
header, Host:, is required and no additional data
needs to be supplied. us the simplest HTTP re-
quest would be:

GET / HTTP/1.1
Host: www.example.com

2

HTTP requests oen include headers that indicate
the client soware, the languages and types of con-
tent the client can handle, and session context infor-
mation in the form of “cookies.”

e response from the server consists of a response
line with the protocol version and 3-digit number
followed by additional header lines and, optionally,
the content (separated from the headers with a blank
line). For example, the response to the above request
might be:

HTTP/1.1 200 OK
Date: Mon, 05 May 2014 18:20:13 GMT
Server: Apache/2.2.16 (Debian)
Accept-Ranges: bytes
Vary: Accept-Encoding
Keep-Alive: timeout=10, max=100
Connection: Keep-Alive
Transfer-Encoding: chunked
Content-Type: text/html

<!DOCTYPE html PUBLIC "-//W3C//DTD ...
... lots of HTML ...

HTTP responses oen include headers that indi-
cate the server soware, the date, the encoding of the
content, its length, and updated cookie information
to be stored by the client and sent along with future
requests.

In some cases this meta-information is embedded
in the HTTP document itself rather than the header.

HTMLMarkup

e topic of HTML and how it is displayed by
browsers would be a course in itself, but a very brief
introduction is given here for completeness.

e text supplied to the web browser consists of
readable text and instruction for the browser in the
form of markup ‘tags’. In HTML the tags are enclosed
in angle brackets (<, >) and are not displayed. In-
stead, the tags tell the browser how to display the text.

For example the bold (B) tag is indicated by placing
the text to be displayed in a bold font between
and tags.

e main advantage of hypertext is the ability to
link to other documents. In HTML this is done with
the anchor (A) tag. e tag includes a parameter con-
taining the URL of the link. For example:

Some bold text.

And this is a link to
BCIT's web page.

e web client will render the word ‘bold’ in a bold
font and will indicate (e.g. by underlining) that the
words “BCIT’s web page” are a link to the indicated
URL.

3

