
ELEX 4550 : Wide Area Networks
2014 Winter Session

UDP and TCP

is lecture describes the two most common transport-layer protocols used by IP networks: UDP and TCP.
Aer this lecture you should be able to:
calculate and explain the values of the following UDP and TCP header fields: source and destination port numbers,
checksum, length, sequence number, acknowledgment, flags and window; predict the change of TCP state machine state
as a result of a socket API call or receiving a frame with specific bits set; predict the maximum amount of data that will be
sent in the next TCP segment based on the sequence numbers of queued data and the values in a received TCP header.

Introduction

So far we have studied the data link layer which is
responsible for getting packets from one end of a
transmission line to the other, and the network layer
which is responsible for getting IP packets from
host to another. In this lecture we look briefly at the
transport layer, a set of higher level protocols that
make it easier to write networking applications.

ese applications include clients such as web
browsers or servers such as file servers. e transport
layer serves to connect client applications on one
host to the desired server processes on another. In
addition, some transport protocols provide other
services such as reliable, in-sequence message deliv-
ery and congestion control that are not provided by
the underlying network layer (IP).

ere are two transport-layer protocols in com-
mon use:

UDP - sends packet from a port on one machine to
a port on another machine; relatively simple

TCP - use a “connection-oriented” model that
provides reliable byte pipe from a process on one
machine to process on another; relatively complex

Other abstractions, such as a reliable datagram
protocol, would be possible but having only two
keeps things simple for implementors.

Transport Layer Functions

e most important features we would like to get
from a transport protocol include:

• reliable delivery: sender receives an acknowledg-
ment that the data was received

• sequencing: packets are guaranteed to arrive in the
same order they were sent

• no duplication: data is not duplicated
• fragmentation: arbitrarily-long byte sequences can
be broken down into smaller packets (called “seg-
ments” in TCP) and reassembled at the destination

• flow control: the receiver can be told (or can infer
that it should) slow down the rate at which it sends
data to a destination

• multiplexing: we can have multiple simultaneous
connections between hosts, even to the same
service

In the same way that IP addresses are used to
specify a particular host, a server can provide
multiple types of services. Each such service needs
an “address” or “service access point” (SAP). In
TCP/IP SAPs are defined by an associated 16-bit
numbered “port”. Various services have well-known
port numbers (e.g. 80 for HTTP).

Each transport-layer IP connection is uniquely
defined by the combination of 4 things: host and
destination addresses and host and destination port
numbers. Each different 4-tuple defines a different
connection. is explains how, for example, multiple
users on the same client can contact the same service
on the same server.
Exercise 1: Two users on the same client connect to the same

web server. Which of the addresses and ports are the same?

Which are different?

UDP

e UDP (User Datagram Protocol) is a simple pro-
tocol that provides very little more that is provided
by IP. UDP is defined in RFC-768. UDP does not
offer flow control, reliable delivery, un-duplicated
or in-sequence delivery. Instead,these features must

lec21.tex 1

be provided by the application. is allows more
flexibility at cost of additional complexity in the
application.

UDP Header

e following diagram, from RFC-768, shows the
UDP header:

0 7 8 15 16 23 24 31
+--------+--------+--------+--------+
| Source | Destination |
| Port | Port |
+--------+--------+--------+--------+
| | |
| Length | Checksum |
+--------+--------+--------+--------+
|
| data octets ...
+---------------- ...

User Datagram Header Format

e header has four 16-bit words: source and
destination ports, length, and a checksum. e
main purpose of the header is to specify destination
service (port, SAP) that should handle the packet.
e source port is included so it can be used to
address a UDP datagram as a response.

e length is the number of bytes in the datagram,
include the header. e checksum is the regular IP
16-bit one’s complement checksum applied to the
header, data and a selected portions (3 32-bit words)
of the IP header (the IP “pseudoheader”) as shown
below:

0 7 8 15 16 23 24 31
+--------+--------+--------+--------+
| source address |
+--------+--------+--------+--------+
| destination address |
+--------+--------+--------+--------+
| zero |protocol| UDP length |
+--------+--------+--------+--------+

Exercise 2: What are the minimum and maximum values for

the UDP length field?

Examples of UDP-Based Applications

A typical UDP-based application is the DNS. A
single UDP packet containing the query is sent to a
DNS server and a single UDP response is received
with the response. e application handles duplicate
or lost frames.

Another class of applications forUDP is interactive
applications such as VoIP (voice over IP). Latency is
very important for interactive applications – some-
times more important than avoiding loss of data. e
reliable-delivery and congestion control features of

TCP can sometimes result in long delays. Interactive
applications oen use UDP so they can implement
their own error- and congestion-control algorithms.

TCP

Transmission Control Protocol (TCP) is the most
commonly-used transport-layer protocol. It is
defined in RFC 793.

TCP is a full duplex protocol – it provides reliable
byte streams in both directions.

Like UDP, TCP connections are established be-
tween ports that allow multiple links between hosts
and also allow selection of the that clients connect to.

A TCP connection has state that needs to be main-
tained for each connection (host/port addresses, se-
quence numbers, buffers, timers, ...). is state needs
to be initialized when the connection is set up and the
memory freed when the connection is terminated.

To deal with highly variable network delays and
data rates, TCP uses a sliding window ARQ protocol
for congestion and flow control.

It is important to understand that although the
TCP frame format and the protocol state machine are
defined in RFC 793, there is considerable variation
in TCP implementations because:

• TCP allows for options to be negotiated at the start
of the connection; hosts may implement different
sets of options, and

• the algorithms used to, for example, decide how
long to wait before transmitting or retransmitting
a frame are implementation-dependent.

TCP Header

e following diagram, from RFC-793, shows the
contents of the TCP header:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| Source Port | Destination Port |
+-+
| Sequence Number |
+-+
| Acknowledgment Number |
+-+
Data		U	A	P	R	S	F	
Offset	Reserved	R	C	S	S	Y	I	Window
		G	K	H	T	N	N	
+-+								
Checksum	Urgent Pointer							
+-+								
Options	Padding							
+-+								
data								
+-+

2

e source and destination ports have the same
meaning as in UDP.

e TCP protocol chops up the data stream into
“segments,” each of which transmitted in separate
IP frames. e Sequence Number is the sequence
number of the first byte in the segment carried by
this frame.

e Acknowledgment Number is the sequence
number of the last byte received by the sender of this
frame.

e Window value can be interpreted to mean
howmany bytes of buffer space the receiver currently
has available.

Note that Sequence number refers to the data
being transmitted in the same frame while Acknowl-
edgment and Window refer to the connection in the
opposite direction.
Exercise 3: The most recently received TCP packet for a

connection had an Acknowledgement Number value of 1000

and a Window value of 64. Assuming 1024 bytes are ready

to be sent, what will be the value of Sequence Number in the

next packet transmitted for that connection? What will be the

length of the IP packet?

e Data Offset the number of 32-bit words in the
header (including options).

e 6 bits in the flag field are used to signal the
state of the connection between peers and manage
the TCP state machine.

e URG and ACK bits indicate that the values in
the Urgent Pointer and Acknowledgment Number
fields are valid.

e SYN and FIN bits are used to start and
terminate a connection.

e PuSH bits can be used to indicate the end of a
message defined by a higher-level protocol. e RST
bit is used to indicate a loss of synchronization (e.g.
Acknowledgment of data not sent) and causes the
connection to be closed.

e checksum is computed over the data, TCP
header and an IP pseudo-header as with UDP.

TCP State Machine

e ASCII diagram below, taken from RFC-793,
describes the TCP state machine. e text in each
block labels that state. e labels on the state
transition path state the action or received flag bits
that cause the transition (above the line) and the
bits that are set in the frame that is sent in response

Transmission Control Protocol
Functional Specification

+---------+ ---------\ active OPEN
| CLOSED | \ -----------
+---------+<---------\ \ create TCB

| ^ \ \ snd SYN
passive OPEN | | CLOSE \ \
------------ | | ---------- \ \
create TCB | | delete TCB \ \

V | \ \
+---------+ CLOSE | \
| LISTEN | ---------- | |
+---------+ delete TCB | |

rcv SYN | | SEND | |
----------- | | ------- | V

+---------+ snd SYN,ACK / \ snd SYN +---------+
	<----------------- ------------------>	
SYN	rcv SYN	SYN
RCVD	<---	SENT
	snd ACK	
	------------------ -------------------	
+---------+ rcv ACK of SYN \ / rcv SYN,ACK +---------+

| -------------- | | -----------
| x | | snd ACK
| V V
| CLOSE +---------+
| ------- | ESTAB |
| snd FIN +---------+
| CLOSE | | rcv FIN
V ------- | | -------

+---------+ snd FIN / \ snd ACK +---------+
| FIN |<----------------- ------------------>| CLOSE |
| WAIT-1 |------------------ | WAIT |
+---------+ rcv FIN \ +---------+

| rcv ACK of FIN ------- | CLOSE |
| -------------- snd ACK | ------- |
V x V snd FIN V

+---------+ +---------+ +---------+
|FINWAIT-2| | CLOSING | | LAST-ACK|
+---------+ +---------+ +---------+

| rcv ACK of FIN | rcv ACK of FIN |
| rcv FIN -------------- | Timeout=2MSL -------------- |
| ------- x V ------------ x V
\ snd ACK +---------+delete TCB +---------+
------------------------>|TIME WAIT|------------------>| CLOSED |

+---------+ +---------+

TCP Connection State Diagram
Figure 6.

(below the line). Other labels are x (send nothing),
active/passive OPEN (client/server socket creation),
create/delete TCB (allocate/release data structures
for the connection) and a Timeout (2× 120 seconds).

Study of the diagram shows that setup and tear-
down of a TCP connections requires a 3-way hand-
shake { SYN, SYN+ACK,ACK } or { FIN, FIN, ACK }.

e above is a quick summary of how connections
are set up and torn down. ere are many more de-
tailswhichwedonot have time to cover in this course.
Exercise 4: What will happen if a host responds to an initial

SYN frame by sending back a frame with only SYN set?

CongestionManagement In TCP

When more data arrives at a router than can be sent
out, the data will build up in queues. is is called
congestion. If the queues get too long then packets
will have to be dropped. ese frames then have
to be retransmitted. is increases the load on the
network which can then become unstable.

3

Since each packet is routed independently, the net-
work layer cannot determine packet delay or loss. On
the other hand, TCP sees acknowledgments and so
it can measure delays and take appropriate measures
to deal with congestion. e transport layer is thus
made responsible for congestion management and
flow control (deciding on the average transmit rate).

One of the main purposes of TCP is to minimize
the likelihood of dropped frames by reducing the
rate at which frames are sent out when congestion is
detected. e algorithms to do this are fairly complex
and implementation-dependent. We will not cover
them here.
Exercise 5: How can a host reduce the rate at which data is

sent to it on a TCP connection?

Examples of TCP-Based Applications

Most internet applications use TCP. is includes
web browsers (the HTTP protocol, server on port
80), e-mail transfer (the SMTP protocol, port 25),
secure shell login (the SSH protocol, port 22) and
many others.

Most of these protocols use text-based dialogs.
For example, an an HTTP client establishes a TCP
connection and then sends a line starting with GET
followed by the URL and a CR character. e server
response with some headers and the page contents.
Similarly, the SMTP protocol uses commands for-
matted as lines beginning with commands such as
HELO, FROM, MAIL and DATA to transfer e-mail
messages.

The Socket API

e “socket” library is commonly used to implement
network client and server soware that uses the
TCP/IP protocol. e API (Application Program-
ming Interface) is a set of functions that can be called
by a program to implement the networking parts of
the program. Although you do not need to be able to
write such applications, it is useful to know how the
API is accessed and you should know which of these
calls cause changes of state in the TCP state machine.
e main functions are:

socket() - allocates and initializes the networking
data structure, similar to open() for reading or
writing files

bind() - sets the local address (port) (used on server
side)

listen() - enables incoming connections (on server)
– the “passive open” described above

accept() - waits for incoming connections (on
server)

connect() - waits for outgoing connections (on
client) – the “active open” described above

send() write()] - sends bytes over the connection

receive()read() - reads bytes received over the
connection

close() - shuts down the connection and releases
memory – the “close” described above

In addition to the functions above, other li-
brary functions are oen used. For example, the
gethostbyname() function can be used to con-
vert a host name to an IP address. e method is
implementation-dependent way, but typically it’s by
querying the DNS.

4

