
ELEX 4340 : Data Communications
2015 Fall Session

Error Detection and Correction

is lecture introduces the topic of channel coding. ese are codes that allow the receiver to (usually) detect and (oen)
correct errors introduced by the channel.
Aer this lecture you should be able to: list some advantages and disadvantages of checksums; compute even and odd
parity bits; compute the Hamming distance between two code words; compute the code rate for block, punctured and non-
punctured convolutional codes; correct errors in a received block code word by exhaustive search; compute coding gain; and
compute the punctured output of a convolutional encoder.

Checksums

A simple way to check for errors in a frame of data
is to compute the sum of the byte (or word) values in
a frame of data. e sum is computed modulo1 the
maximum value of the check sum. e additive com-
plement2 of the sum is then appended to the packet
to ensure the checksum of an error-free packet will
be zero. is is the type of error-detection used by
TCP/IP frames used on the Internet.

Checksums are typically used by higher-level pro-
tocols since they are easy to compute in soware.
However, there are many common types of errors,
such as insertion of zero words and transposition of
values that are not detected by checksums.

Exercise 1: Compute the modulo-4 checksum, C, of a frame

with byte values 3, 1, and 2. What valueswould be transmitted

in thepacket? Whatwouldbe the value of the checksumat the

receiver if therewerenoerrors? Determine the checksum if the

received frame was: 3, 1, 1, C? 3, 1, 2, 0, C? 1, 2, 3, C?

Error Detection

Another technique for detecting errors in received
frames is for the transmitter to compute additional
bits called “parity bits” and add them to the end of the
frame. e receiver computes parity bits itself from
the received data and compares them to the received
parity bits. If the computed and received parity bits
match then either there were no errors or the data
was corrupted in such a way the the corrupted data
has the same parity value.

1“modulo-N” means the remainder aer dividing by N.
2e “additive complement” is the value that would have to

be added to make the result zero (modulo-N).

e probability of the latter event is called the un-
detected error probability. Good error detecting codes
try to make this probability as low as possible.

Single Parity Bits

e simplest type of parity is a single parity bit. Typi-
cally the parity bit is computed as the modulo-2 sum
of all of the bits in the message.

Exercise 2: What is a modulo-2 sum? What is the modulo-2

sum of 1, 0 and 1? What is the modulo-2 sum if the number of

1’s is an even number?

emost common example of a single parity bit is a
parity bit added to each ASCII character. Most serial
interfaces can be configured to compute and append
a parity bit to each ASCII character. is bit can be
either the sum of all of the bits (“even parity”) or it’s
complement (“odd parity”).

e receiver computes the parity bit from the data
bits and compares the computed parity bit to the
transmitted parity bit. If the computed and received
parity bits match then there was either no error or
there were an even number of errors.

Block Codes

More complex channel codes use multiple parity bits.
A block code where each block of n bits contains k
data bits and n− k parity bits is called an (n, k) code:
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Exercise 3: How many possible code words are there for an

(n, k) code? How many possible parity bit patterns are possi-

ble for each code word?

e Hamming Distance is the number of bits that
differ between two code words. e performance of
a code is mainly determined by the minimum (Ham-
ming) distance (Dmin) between any two code words
in the code.
Exercise 4: What is theHammingdistance between the code-

words 11100 and 11011? What is the minimum distance of a

code with the four codewords 0111, 1011, 1101, 1110?

e rate of a code is the ratio of information bits to
total bits, or k/n. is is a measure of the efficiency of
the code. Aswe add parity bits the code rate decreases
but, for a well-designed code, the minimum distance
and thus the error-correcting ability increases.

Forward Error Correction Coding

Certain block codes allow the receiver to correct er-
rors introduced by the channel. ese types of codes
are called Forward Error Correcting (FEC) because
the receiver does not have to ask for erroneous code
words to be retransmitted.

Error correction is possible when the code words
include enough parity bits that the receiver can de-
cide which codeword was transmitted even though
the received codeword does not match any of the
codewords that could have been transmitted (in other
words, it is known to contain errors).

MinimumDistance Decoding

Conceptually, a receiver can correct errors by choos-
ing the valid codeword that has the smallest Ham-
ming distance from the received codeword. is is
because codewords with fewer errors are more likely
to happen than those with more errors.
Exercise 5: A block code has two valid codewords, 101 and

010. The receiver receives the codeword110. What is theHam-

ming distance between the received codeword and each of

the valid codewords? What codeword should the received de-

cide was sent? What bit was most likely in error? Is it possible

that the other codeword was sent?

In general, a block code with a minimum Ham-
ming distance between valid codewords of d can de-
tect d−  errors and correct ⌊d−

 ⌋ where ⌊·⌋ denotes

the floor function (round down to the next smallest
integer).

Exercise 6: What is the minimum distance for the code in the

previous exercise? Howmany errors canbedetected if youuse

this code? Howmany can be corrected? What are n, k, and the

code rate (k/n)?

However, with large codes it is not possible to do
an exhaustive search through all possible codewords
to find the one with the minimum distance. ere is
a large field of study devoted to the design of codes
which can be efficiently encoded and decoded.

Most block codes, including the well-knownHam-
ming and Reed-Solomon codes, are encoded and de-
coded using the properties of polynomials with coef-
ficients from a Galois Field.

Coding Gain

When the FEC code is well-matched to the error rate
and to the types of errors likely to be encountered,
the use of FEC results in higher throughput because
blocks that contain correctable errors do not need to
be retransmitted.

Another possible advantage of using FEC is better
power efficiency. is can happen if the same post-
correction error rate can be achieved by transmitting
less power. Even though the channel will introduce
more errors because of the lower signal-to-noise ra-
tio, the use of FEC can correct enough of these errors
to reduce the error rate back to the error rate obtained
when the higher power was used.

Since FEC requires additional parity bits to be
transmitted we should compare power efficiency us-
ing only the information bits, not the parity bits. e
metric used for this comparison is the energy per in-
formation bit, Eb. e ratio of the Eb required to
achieve the desired error rate with and without cod-
ing is called the “coding gain”:

coding gain =
Eb (without coding)
Eb (with coding)
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Exercise 7: What are the units of Energy? Power? Bit Period?

How can we compute the energy transmitted during one bit

period from the transmit power and bit duration?

Exercise 8: A system needs to operate at an error rate of

−. Without FEC it is necessary to transmit at 1W at a rate

of 1 Mb/s. When a rate-1/2 code is used together with a data

rate of 2Mb/s thepower required to achieve the target BERde-

creases to 500mW. What is the channel bit rate in each case?

What is the information rate in each case? What is Eb in each

case? What is the coding gain?

Convolutional Codes

Although it is possible to use block codes to im-
plement FEC, the trend until recently has been to
use convolutional codes for communication systems.
is was mainly because of the existence of a rel-
atively simple and efficient decoding algorithm for
convolutional codes called the Viterbi algorithm.

A rate k/n convolutional code is implemented by
reading a certain number of bits into a shi register
and outputting a number of modulo-2 sums of these
bits. An example is shown below3:

3Taken from the 802.11 standard.

If there are n output bits for each k input bits the
rate of the code is k/n. e “constraint length,” (K)
of the code is the number of bits that can affect each
output bit and is equal to the length of the shi reg-
ister plus one (because the input bit is also used in
computing the output).

Exercise 9: Assuming one bit at a time is input into the en-

coder in thediagramabove,what are k, n,K and the code rate?

Viterbi Algorithm

Most FEC decoders for convolutional codes use an
algorithm called the Viterbi algorithm. is algo-
rithm is a “maximum likelihood” decoder because it
chooses the bit sequence with the minimum distance
from the received sequence (or close to it).

e VA uses the trellis structure of the code (a tree
with branches that merge) to avoid exponential in-
crease in decoding complexity with message length.
Instead, the complexity is proportional to K where
K is the constraint length. Although the algorithm is
relatively complex, implementations are readily avail-
able.

Although many different convolutional codes are
possible, there are certain standard codes that are
used by many different systems. Hardware im-
plementations are typically only available for these
codes. e most common convolutional code is the
rate-1/2 code with a constraint length of 7 shown
above.

Higher-rate codes can be derived from the basic
rate-1/2 code by not transmitting some of the bits.
is is called “puncturing.” e same decoder hard-
ware can be used by feeding the decoder a value rep-
resenting “unknown” (an “erasure”) in place of the
missing parity bits.

Exercise 10: Consider the encoder above. If the only the bits

corresponding to the outputs A, A and B, and B are transmitted

corresponding to every three input bits, what is the code rate

of this punctured code?

Reed Solomon Codes

e Reed-Solomon code is a block FEC code that is
widely used. RS codes operate on non-binary Galois
fields, typically GF(64) or GF(256). A GF(256) code
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is able to correct a certain number of 8-bit word er-
rors, regardless of the number of bit errors in each
word. For this reason Reed-Solomon codes are ef-
ficient for channels that have bursty errors because
bursts of errors causemultiple errors to fall within the
same 8-bit word.

Interleaving

In many cases errors are caused by white noise and
appear at random times. However, sometimes errors
are caused by short-duration events such as fades or
intermittent interference. is causes a burst of errors
to happen.

Bursty errors can overwhelm the error-correcting
ability of FEC codes and greatly reduce their effective-
ness. To avoid this, it is common to ‘interleave’ the
output of the FEC encoder and de-interleave it before
FEC decoding. If the interleaver size is sufficiently
large this effectively turns bursty errors into random
errors.

A typical interleaver is a block interleaver. Bits are
written row-wise and read out column-wise. e in-
terleaver writes and reads bits in the opposite way to
rearrange the bits back into their original order.
Exercise 11: Give the numbering of the bits coming out of

a 4x4 interleaver. If bits 8, 9 and 10 of the interleaved se-

quence have errors, where would the errors appear in the de-

interleaved sequence? If the receiver could correct up to one

error per 4-bit word, would it be able to correct all the errors

without interleaving? With interleaving?

Exercise 12: If errors on the channel happened in bursts and

you were using a RS code using 8-bit words, would you want

to interleave bits or bytes?

Modern FEC Codes

Two other FEC codes have become popular in recent
years because their error-correcting performance ap-
proaches the Shannon Limit.

Turbo Codes use two different codes to encode the
data. e decoder uses the information from one
code to help with decoding of the other code. en
that information is used to help decode the first code.
e procedure is repeated iteratively until there are
no errors (determined by a CRC) or a time limit is
reached.

Low Density Parity Check (LDPC) codes are block
codeswith sparse (few 1’s) parity checkmatrices. is
means that each parity bit is a function of only a few
message bits.

Modern FEC decoders also use “so-decision” de-
coding algorithms that operate on the probabilities
that particular bits are zeros or ones rather than op-
erating on binary “hard decisions”.
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