Polynomials in GF(2) and CRCs

Exercise 1: Write the addition, subtraction and multiplication tables for GF(2). What logic function can be used to implement modulo-2 addition? Modulo-2 multiplication?

Exercise 2: What are the possible results if we used values 0 and 1 but the regular definitions of addition and multiplication? Would this be a field?

Exercise 3: What is the polynomial representation of the codeword 01101?

$$0x^{4} + |x^{3} + |x^{2} + 0x^{4} + |x^{0}|$$

Exercise 4: What is the result of multiplying $x^2 + 1$ by $x^3 + x$ if the coefficients are regular integers? If the coefficients are values in GF(2)?

$$(x^{2}+1)(x^{3}+x)=x^{5}+x^{3}+x^{3}+x^{2}$$

if coeff not GF(2): $x^{5}+2x^{3}+x$
if coff from GF(2): $x^{5}+x^{5}+x^{2}$

Exercise 5: If the generator polynomial is $G(x) = x^3 + x + 1$ and the data to be protected is 1001, what are n - k, M(x) and the CRC? Check your result. Invert the last bit of the CRC and compute the remainder again.

ordered remainder

= 2
.: 3 bits in
remainder (CRC)

a x2 + bx+ cx°

n-k=3

$$|x^3 + 0x^2 + |x| + |x$$

Exercise 6: What is the probability that a randomly-chosen set of n-k parity bits will match the correct parity bits for a given codeword? Assuming random data, what is the undetected error probability for a 16-bit CRC? For a 32-bit CRC? How long a CRC is required to guarantee detection of all single-bit errors?