
ELEX 4340 : Data Communication
2014 Fall Session

PN Sequences and Scramblers

Aer this lecture you should be able to: distinguish between random and pseudo-random signals, classify signals as PN,
PRBS, and/or ML PRBS signals according to their quantization, periodicity, mean value and maximum run lengths,
draw the schematic of a LFSR ML PRBS generator, explain two reasons why scrambling may be desirable, select between
scrambling and encryption based on the need for secrecy, select between additive and multiplicative scramblers based on
the availability of framing information, explain the error patterns resulting from erroneous input to a self-synchronizing
scrambler, and implement (draw schematic of) additive scramblers and self-synchronizing multiplicative scramblers.

Random and Pseudo-Random Signals

Random signals are unpredictable. An example is
the thermal noise generated by a resistor. Some
statistics of the noise waveform, such as the average
voltage (e.g. 0), the power (given by kTBF), and the
spectrum (constant) may be known. But we may
not be able to predict the value of the waveform at a
given point in time.

It is sometimes useful to generate waveforms
that both have known statistical properties (e.g. the
average, power, spectrum, etc.) and whose values
are predictable. ese types of signals are called
“pseudo-random” signals. Because of their noise-like
characteristics they are also called pseudo-noise
(PN) signals.

A pseudo-random bit sequence (PRBS) is a two-
valued (0,1) PN signal. PN and PRBS signals have
many important applications in communications
systems. In this lecture we will study the properties
of a type of PRBS called a maximal-length (ML)
sequence, see how these sequences are generated
and one of their applications, “scrambling.” Other
applications include spread-spectrum systems and
generating test signals.

Properties of a ML PRBS

ML PRBS sequences, sometimes called m-sequences,
have a number of interesting properties including:

• the sequence is called maximum-length because
the sequence has a period of K −  where K is
the number of bits of state in the generator (shi
register stages). is is one less than the maximum
number of states of a K-bit counter.

• there are exactly K− ones and K− −  zeros

• the sequence is approximately orthogonal to any
shi of itself

Exercise 1: How many flip-flops would be required to

generate a ML PRBS of period 16383? How many ones would

the sequence have?

Generating aML PRBS

AML PRBS can be implemented using a shi register
whose input the modulo-2 sum of other taps.

D Q D Q D QD Q

clock

is is known as a linear-feedback shi register
(LFSR) generator. ere are published tables show-
ing the LFSR tap connections that result in a ML
PRBS generator.

If the contents of the shi register ever become
all zero then all future values will be zero. is is
why the generator has only K −  states – the state
corresponding to all zeros is not allowed.

Scrambling

Much real-world data contains repetitive compo-
nents. Examples include sequences of constant
values such as a video image that doesn’t change
from one frame to the next, a document with sections
that are all one level (e.g. white), or repetitive data
values in a file or database.

Two possible problems are introduced by this
non-random data:

lec12.tex 1



• when these values are transmitted the periodic
components of the signal result in peaks in the
spectrum that have larger than average power.
ese strong discrete frequency components can
cause interference.

• long sequences of certain values will result in a
signal that may not have enough transitions to
allow for clock recovery.

To solve these problems most communication
systems use “scramblers” to remove undesirable
patterns in the data. Two types of scramblers as
described below.

It is important to understand that a scrambler
does not provide secrecy (encryption).
Exercise 2: Why not?

Frame-Synchronous Scramblers

e simplest type of scrambler consists of a ML
PRBS generator whose output is exclusive-OR’ed
with the data. ese types of scramblers are called
“additive” scramblers because the PN sequence is
added, modulo-2, to the data.

�10�46&7
+IRIVEXSV

WGVEQFPIH
���HEXE

HEXE

PSEH

Since the ML sequence needs to be synchronized
between the transmitter and receiver, this type of
scrambler is only practical for systems that have a
frame structure. e state of the ML PRBS generator
can be set to a specific value at the start of each frame.
is value can be either a fixed value for every frame
or it can be a value that is included in the frame’s
preamble.

Self-Synchronizing Scramblers

Some protocols don’t use framing and operate on a
continuous sequence of bits. A scrambler for such a
system needs to synchronize the descrambler to the
scrambler without any external information in order
to recover from any loss of synchronization.

Self-synchronizing scramblers are sometimes
called multiplicative scramblers because scrambling
and descrambling are implemented using polynomial
division and multiplication. e scrambled output,
S(x), is generated at the transmitter by dividing by
the generator polynomial G(x):

S(x) =
M(x)
G(x)

and transmitting the quotient (the remainder is
ignored). e receiver de-scrambles the scrambled
signal by multiplying by G(x):

M(x) = S(x)G(x)

As shown in a previous lecture we can implement
polynomial division and multiplication using shi
registers and xor gates.

For example, the ITU-T V.34 modem specifi-
cation defines a self-synchronizing scrambler for
calling mode that uses the generating polynomial:
GPC(x) = +x−+x− (equivalent to x+x+).
e scrambler and descrambler can be implemented
as shown in the following figures (numbers in boxes
are delays, not bit index):

One problem with self-synchronizing scramblers
is that an error in the received data pattern can result
in multiple errors in the de-scrambled errors. is is
called error propagation.
Exercise 3: How many errors will appear in the output of a

V.34 descrambler if there is one input error?

Certain input sequences could set the scrambler
state to zero and produce no scrambling. However
the scrambler and descrambler can be designed to
detect such undesirable sequences and invert the
next bit when this is detected.

2


