Lecture 6 - Baseband Transmitters and Receivers

Exercise 1: What is the current flowing into a 1nF capacitor if it is being charged at a rate of $10V/\mu s$?

$$\frac{i=}{1000} = 10^{-1} \text{ if } = 10^{-1} \text{ if } = 10 \times 10^{-1} =$$

Exercise 2: The RS-232 standard specifies a maximum slew rate of $30V/\mu s$. Assuming a voltage swing of 30 volts, what is the maximum data rate for which two signal level transitions occupy 10 % of the bit period?

$$2T = 6.1 \cdot 1 \text{ bit}$$

$$2T = 6.1 \cdot 1 \text{ bit}$$

$$= 30 \frac{V}{\mu \text{s}}$$

$$= 30 \frac{V}{\mu \text{s}}$$

$$= 30 \frac{V}{\mu \text{s}}$$

$$= 7 \text{ bit}$$

$$= 1 \mu \text{s}$$

$$= 1 \text{ bit}$$

$$= 50 \text{ kHz}$$

Exercise 3: If the capacitance of the transmission line joining several OC drivers is 1nF and the pull-up resistor is $1k\Omega$, how long will it take for the pull-up to pull the line from 0V to 63% of the logic high voltage?

7 = PC= $1k \cdot 1nF$ = $10^{3} \cdot 10^{-9}$ = 10^{-6}

Exercise 4: When the input to the optocoupler is high, will the output be high or low? Assume a pull-up is connected to the output.

a high input turns on the LED, this turns on the output transistor, this pulls the output low.

Exercise 5: What is the active termination supply voltage for bipolar signalling?

assuming equally likely H and L levels, a supply voltage of zero will minimize power consumption.