Lecture 2 Transmission Lines

Exercise 1: How much does a cable's resistance increase when the gauge size increases by 6? By 3? Hint: a wire's resistance is proportional to its cross-sectional area.

gauge in weases by	6	3	12
donniter decreoses by	$z \left(\frac{1}{2} \right)$	上区	4 (X 1/4)
area deresse by	4 (x4)	1/2	
resistance increase by	4 (×4)	2	

Exercise 2: What is the characteristic impedance of a lossless cable with an inductance of 94 nH per foot and capacitance of 17pF/ft?

$$Z_{0} = \sqrt{\frac{L}{C}} \qquad L = 94 \text{ nH} \qquad 94 \times 10^{-9}$$

$$C = 17 \text{ pF} \qquad 17 \times 10^{-12}$$

$$74.36 \quad \Omega \qquad Z_{0} = \sqrt{\frac{94}{17}} \frac{\times 10^{-9}}{\times 10^{-12}} \sim \sqrt{\frac{100}{20}} \frac{1000}{20}$$

$$\approx \sqrt{5000} \approx 70 \quad \Omega$$

Exercise 3: What is the characteristic impedance of UTP made from 24-gauge wire with polyethylene insulation ($\epsilon_r=2.2$) of 0.25mm thickness?

Aw 624
2Aga:
$$D=0.5mm$$

$$S=0.5+0.5$$

$$= 1mm$$

$$2S = 2mm$$

$$= \frac{120}{\sqrt{2.2}} ln \left(\frac{2}{0.6}\right)$$

$$\approx \frac{100 \cdot ln}{100 \cdot l.1}$$

$$\approx \frac{110}{100} ln \left(\frac{112}{112}\right)$$

Exercise 4: What is the characteristic impedance of a co-ax cable with a 0.8mm diameter center conductor, 3.5mm diameter shield and foamed polyethylene between them that has a dielectric constant of 1.5?

$$Z_0 = \frac{60}{\sqrt{\epsilon_V}} \operatorname{Im} \left(\frac{D}{d} \right) = \frac{60}{\sqrt{1.5}} \operatorname{Im} \left(\frac{3.5}{0.8} \right)$$

$$\approx 50 \times 1.1$$

$$\approx 55 S C$$

$$\frac{72 C}{\sqrt{\epsilon_V}}$$

Exercise 5: An 800 MHz signal is output from a CATV amplifier at a power level of 10dBm. What power level would you expect at the other end of a 75m run of co-ax whose loss is specified as 24dB/100m at 800 MHz?

$$|OdB_{m}\rangle = \frac{75m^{-2}}{100m} ?$$

$$f = 805 \mu H_{2}$$

$$|OdB_{m}\rangle = \frac{24}{100m} @ 800 \mu H_{2}$$

$$|OdB_{m}\rangle = \frac{1}{2} \frac{1}{100}$$

$$|A_{m}\rangle = \frac{1}{2} \frac{1}{100} \Rightarrow \frac{1}{4} mW$$

$$\frac{1}{2} \frac{1}{2} = \frac{1}{2} \Rightarrow -6 aBn$$

$$|OdB_{m}\rangle = \frac{1}{2} = 6 aBn$$

e.g. with linear loss units 1055 = 6.005 / 100mfor 75m 1055 = (.005)

Exercise 6: What is the velocity factor for a cable with polyethylene insulation ($\epsilon_r = 2.2$)? How long would it take for a signal to propagate 100m? For a cable with air dielectric?

$$t = \frac{d}{dr} > \frac{100}{3 \times 10^8 \cdot 0.66} = \frac{1 \times 10^2}{2 \times 10^8} = 0.5 \times 10^{-6}$$

for air
$$E_r = 1$$
 $VF = 1$
 $t = \frac{100}{3 \times 10^8} = 0.3 \times 10^{-6} \approx 3600$ s

Exercise 7: If the optical signal wavelength is 1330nm what is the frequency?

$$\lambda = 1.3 \times 10 \text{ pm}$$

$$4 = 1.3 \times 10 \text{ pm}$$

$$4 = 1.3 \times 10 \text{ pm}$$

$$4 = 1.5 \times 10^8 \text{ m/s}$$

$$5 = 1.5 \times 10^8 \text{ m/s}$$

$$V = \lambda \cdot f \qquad (m \cdot \frac{1}{8})$$

$$f > \frac{\pi}{\lambda} = \frac{1.5 \times 10^8}{1.3 \times 10^{-6}} \approx 1 \times 10^{12} = 100 \times 10^{12} = 100^{$$

Exercise 8: A point-to-point link uses a transmit power of 1 Watt, transmit and receive antennas with gains of 20dB and operates at 3 GHz. How much power is received by a receiver 300m away?

$$P_{R} = P_{T} G_{T} G_{R} \left(\frac{\lambda}{4\pi d}\right)$$

$$P_{R} = P_{T} G_{T} G_{R} \left(\frac{\lambda}{4\pi d}\right)$$

$$P_{R} = P_{T} G_{T} G_{R} G_{R} = 20 \text{ MB}$$

$$20 = 10 \log_{2} \left(\frac{P_{L}}{P_{L}}\right)$$

$$\lambda = \frac{C}{f} = \frac{3 \times 10^{8}}{3 \times 10^{1}} = 6.1 \text{ m}$$

$$G_{Q} = G_{T} = \frac{P_{L}}{P_{L}} = 10^{2} = \frac{100}{100}$$

$$P_{R} = 1 \times 100 \times 100 \left(\frac{G \cdot 1}{4\pi \cdot 300}\right)^{2} \approx 10^{4} \left(\frac{1 \times 10^{4}}{3 \times 10^{3}}\right)^{2}$$

$$\approx 10^{4} \left(\frac{1 \times 10^{4}}{3 \times 10^{3}}\right)^{2} \approx 10^{4} \left(\frac{1 \times 10^{4}}{3 \times 10^{3}}\right)^{2}$$

$$\approx 10^{4} \left(\frac{1 \times 10^{4}}{3 \times 10^{3}}\right)^{2} \approx 10^{4} \left(\frac{1 \times 10^{4}}{3 \times 10^{3}}\right)^{2}$$

$$\approx 10^{4} \left(\frac{1 \times 10^{4}}{3 \times 10^{3}}\right)^{2} \approx 10^{4} \left(\frac{1 \times 10^{4}}{3 \times 10^{3}}\right)^{2}$$

$$\approx 10^{4} \left(\frac{1 \times 10^{4}}{3 \times 10^{3}}\right)^{2} \approx 10^{4} \left(\frac{1 \times 10^{4}}{3 \times 10^{3}}\right)^{2}$$

Exercise 9: Rank each of twisted-pair, co-ax, optical fiber and free space media according to cost of the medium, cost of the interface, media size and immunity to interference.

	rediun	COST of interfere	media tuctoss	interference
twisted pair (UTP)	₽	Þ	thiner	L →M
co- ~ ×	\$\$	\$\$	thicker	\sim
fiber	<u>\$</u> \$\$	\$ \$ \$	12 Jul (Small)	H
free space	o (&)	4222	?	<u> </u>
•				