Lecture 14 - ARQ and Flow Control

Exercise 1: Create a table summarizing the different types of ARQ. Include: throughput, transmitter memory, receiver memory and relative complexity.

	stoph wait	go bock N	selective repeat
throughput	slowest	nedium	highest
tx memory	1	Μ	M
LX would	0	0	M
complexity	simplest	medium	most complex

Exercise 2: A data communication system operates at 1 Mb/s and uses 10000-bit data frames and 100-bit ACK frames. What are the frame durations? What is the throughput if there is no channel delay and no errors? If the round-trip channel delay is a 0.5s (typical for satellite links)? If go-back-N ARQ

is used, assuming the transmitter can store 200 unacknowl-

edged frames?

1 × 3 4

$$\frac{10^{4} \text{ bits}}{10^{8} \text{ bits}/s} = 10^{-2} = 10 \text{ ms} \qquad \frac{10^{2}}{10^{6}} = 10^{-4} = 0.1 \text{ ms}$$

$$\frac{10^{9} \text{ bits}/s}{10^{10} \text{ bits}/s} \approx 1 \text{ Mb/s}$$

$$\frac{10^{9} \text{ bits}/s}{10^{10} \text{ bits}/s} \approx \frac{10^{9} \text{ co}}{10^{10} \text{ bits}/s} \approx 1 \text{ Mb/s}$$

$$\frac{10^{9} \text{ bits}/s}{10^{10} \text{ bits}/s} \approx \frac{10^{9} \text{ co}}{10^{10} \text{ bits}/s} \approx 20 \text{ kb/s}$$

Exercise 3: A communication system loses every 10th frame (e.g. due to periodic noise bursts). Ignoring ACK overhead, what is the throughput using go-back-N ARQ? Using Selective ARQ?

Exercise 4: Which of the above flow control methods can be used with frame-oriented protocols? On unidirectional links?

	hardware software		A CK
frome	?	?	✓
unidirectional links	?	No	e W