
ELEX 4340 : Data Communications
2013 Fall Session

Lab 8 - Bit Error Rate Measurement

Introduction

In this lab you will use a Field Programmable Gate
Array (FPGA) to build a circuit to measure Bit Error
Rate (BER).

e BER is the fraction of bits that are received in-
correctly and is a common performance metric for
digital communication systems.

Interference, distortion, crosstalk, and various
types of noise can all cause bit errors. In this lab we
will measure the BER of an NRZ link that has Gaus-
sian noise added to it. is is the so-called the Addi-
tiveWhite GaussianNoise (AWGN) channel. Wewill
compare our experimental BER results to the BER re-
sults predicted by the theory covered earlier in the
course.

Small- and medium-volume communication
products oen include programmable logic devices
called FPGAs. FPGAs consist of thousands of simple
logic elements whose interconnections and function-
ality can be configured to perform arbitrary digital
logic functions. Pre-designed “Intellectual Prop-
erty” (IP) building blocks such as microprocessors,
communication interfaces, and signal processing
functions can be included in FPGA designs.

In this lab you will use a DE-0 Nano FPGA
“Demonstration and Education” board that contains
an Altera EP4CE22F17C6N FPGA. is FPGA has
22,000 logic elements, 154 I/O pins and 600k of RAM
memory. e board includes some simple I/O pe-
ripherals including 8 LEDs, two push-buttons and
two “header” connectors with 40 general-purpose
I/O pins each. e Quartus II FPGA design soware
will be used to synthesize (compile) the design and
program (configure) the FPGA.

Circuit Description

e hardware used to implement the AWGN channel
is shown below:

pnout is a logic-level (0 to 3.3V) 10 MHz Pseudo-
RandomBit Sequence (PRBS)with a period of 231−1
bits. It is low-pass filtered by an RC filter with a 1 µs
time constant. is produces an analog voltage that
varies in a pseudo-random manner according to the
bit pattern and has a probability density function that
is approximately Gaussian. e level of the noise sig-
nal can be adjusted with a 10k pot acting as a variable
voltage divider.

txdata is a 100 kbps (kHz) PRBS data signal with
a period of 210 − 1 bits.

e data and noise signals are input to an LM3022
comparator. e comparator subtracts the noise sig-
nal from the data and outputs a high logic level if the
result is greater than zero. us the noise causes an
error when the data signal is positive and the voltage
of the noise signal exceeds the voltage of the data sig-
nal.

e FPGA compares the transmitted and received
digital data (txdata vs rxdata) to detect and count
bit errors. Bits 0, 4, 8, 12 and 16 of a 17-bit error
counter are displayed on the board’s LEDs so you can
tell when the error count reaches certain values (1, 16,
256, 4096 and 65536 respectively).

Pre-Lab Procedure

Before the lab you should complete the FPGA design
and synthesize (compile) it to an FPGAprogramming
(.sof) file using Quartus II.

lab8.tex 1



Download the partial solution .zip file from the
course web site. e zip file includes a project
file (lab8.qpf), a block diagram (schematic) file
(lab8.bdf), a settings file (lab8.qsf) and four
pairs of files (a .qip and a .vhd file for each of
the pnclock, dataclock, shiftregister, and
errors modules).

e settings file contains the FPGAdevice type and
the pin assignments so that the synthesizer knows
which FPGA pins should be used for the signals
in your design. I/O pins are defined for the LEDs
(LED[7..0]) and the reset button (reset) on the
board. ePNoutput (pnout), data output (txdata)
and the data input (rxdata) are connected to GPIO0
connector pins shown above and described below.

e 10 MHz PN PRBS clock, pnclock, is derived
by dividing down the 50MHz oscillator on the board.
It has an output, pnclockN, that is delayed by half a
clock period and drives the data PRBS generator. e
time offset minimizes digital switching noise when
the data signal is sampled.

edata clock signaldataclock also has a delayed
version, samplingclock, that is used to sample the
data in the middle of the bit period.

ere are two 31-bit shi registers that shi le (LS
toMSbit) and are used to implement the LFSRs. Each
shi register has a serial input, shiftin and each
bit of the shi register is available in parallel, on the
datasr and pnsr buses. You will have to complete
the design by making connections from the correct
shi register outputs to the XOR gate inputs. Con-
nections are made by labeling1 a conductor with a
signal name. For example, labeling a conductor with
pnsr[8]would connect it to the 9’th storage element
of the pnsr shi register.

e partial solution also has a a 17-bit counter with
a synchronous count enable input. e counter only
counts up if the error (error) input is asserted at the
rising edge of the clock. Bits 0, 4, 8 12 and 16 of the
counter are connected to LED[0] through LED[4] so
you can tell when the error count reaches 1, 16, 256,
4096 and 65536. e synchronous clear input, sclr,
is connected to the reset signal.

e reset signal is driven by (inverted) pushbut-
ton KEY0. It has two functions: it resets the error
counter to zero and initializes the LFSRs to all ones.
is is necessary because on power-up the LFSRs are

1Right-click and select Properties.

initialized to zeros. is means your circuit will not
generate noise or data until it has been reset!

For testing purposes the PLL locked status is
copied to LED[7] and the reset input is copied to
LED[6..5].

e error signal is only asserted if rxdata differs
from txdata and txdata is high (only errors on 1’s
are counted).

e supplied solution will not work properly be-
cause the shi register taps are not correct. You will
have to look up the correct taps to use to achieve the
desired PRBS length and select the appropriate shi
register bits as inputs to the XOR gates.

Synthesize the modified design to make sure there
are no errors. Make sure you have the files in the
project directory available for the lab (put them on
your H: drive and/or on a flash drive).

Submit a PDF file to the dropbox on the course
web site containing your name, ID, lab number, date
and a screen capture of the modified portion of your
schematic.

Lab Procedure

Assemble the AWGN Channel

Connect a USB cable from the PC to theUSB connec-
tor on the FPGA board. e blue power LED should
light and the LEDs should show the default “breath-
ing” demo.

Run theQuartus II version 13 soware. Open your
project file (File/Open Project). You may want to
work off your H: drive to avoid losing work.

Synthesize your design (Processing/Start Compila-
tion). Correct any errors and repeat until your design
synthesizes without errors.

Run the programmer utility (Tools/Programmer),
make sure the USB-Blaster programmer is detected
and press Start to program the FPGA with your de-
sign. Press the KEY0 button to reset the FPGA and
turn on LEDs 5 and 6. Disconnect the USB cable to
power-down the board.

Connect a supplied 40-pin ribbon cable to the
GPIO0 connector on the FPGA board (see photo be-
low).

Build theAWGNchannel circuit on your solderless
prototyping board and make the connections to the
ribbon cable connector as shown below. Obtain 3.3V

2



from the ribbon cable connector pin 29 and ground
from pin 30.

e following photograph shows how connections
can be made from the ribbon cable connector to the
solderless prototyping board by treating the connec-
tor as if it were another prototyping board:

e pinout of the LM3302 is as follows:

e following photograph shows the LEDs and
pushbuttons on the board:

You will use the reset pushbutton (labelled KEY0
on the board) to reset the error counter. LEDs la-
belled LED0 through LED4 turn on when the error

counts reach 1, 16, 256, 4096 and 65536 errors respec-
tively.

e following diagram labels the connection points
on the ribbon cable connector with pin 1 (red con-
ductor) on top. e letter-number pairs are the
row and column respectively on the 256-pin (16×16)
BGA (ball-grid array) FPGA package; numbers be-
ginning with zero (0) are signal names used in the
the DE-0 documentation (prefixed with GPIO_), the
other numbers are the 40-pin “header” connector
numbers. For example, the signal on FPGA pin A2
has signal name GPIO_02 and is on pin 5 of the con-
nector (third pin from the top on the right side).

D3 00 2 1 0_IN0 A8
C3 01 4 3 0_IN1 B8
A3 03 6 5 02 A2
B4 05 8 7 04 B3
B5 07 10 9 06 A4

GND – 12 11 – 5V
D5 09 14 13 08 A5
A6 011 16 15 010 B6
D6 013 18 17 012 B7
C6 015 20 19 014 A7
E6 017 22 21 016 C8
D8 019 24 23 018 E7
F8 021 26 25 020 E8
E9 023 28 27 022 F9

GND – 30 29 – 3.3V
D9 025 32 31 024 C9
E10 027 34 33 026 E11
B11 029 36 35 028 C11
D11 031 38 37 030 A12
B12 033 40 39 032 D12

Connect one ’scope channel to the non-inverting
(data) input of the comparator and one to the in-
verting (noise) input. Enable the ’scope’s average
and RMS voltagemeasurements for the noise channel
and enable measurement statistics (see Measurement
Hints section below).

BERMeasurements

Adjust the noise power until you get approximately
one change every two seconds on the least-significant
LED (LED[0]). Press the reset button and measure
the time it takes for the next most-significant LED to
turn on (about 30 seconds). is is the time it took
to count 16 bit errors. Multiply this time by the data

3



rate (50,000 bits/second since only ‘1’ bits are being
checked) to get the number of bits checked.

Measure the high-level signal voltage using the
measurement cursor. Measure the average noise volt-
age and the noise variance (see Measurement Hints
below). Compute the predicted BER using the equa-
tion:

Pe =
1

2
erfc(

v

σ
√
2
)

where v is the positive signal voltage (approximately
1.65) minus the average noise voltage, and σ is the
standard deviation of the noise (this is the noise RMS
voltage if the signal is AC coupled; see below). Com-
pare your measured and predicted BER values.

Enter your measurements into the spreadsheet2. It
should include columns for the error count, elapsed
time, measured BER, signal voltage, average noise
voltage, noise variance and predicted BER.

Repeat for the next most significant LED (256 er-
rors): increase the noise power so the blink rate on
LED[1] is about one every two seconds and repeat
the BER and SNR measurement and the BER predic-
tion calculations.

Repeat for the remaining LEDs so that you have
four measured and four predicted BER values.

Insert a graph (chart) in your spreadsheet com-
paring the measured and predicted BERs. e BER
should be plotted on a logarithmic scale and the SNR
(ratio of signal voltage to square root of the variance)
should be in dB as shown below (your values may be
different):

2It is good practice to make a permanent record of your mea-
surements in a lab notebook.

Measurement Hints

You will need to measure the signal and noise powers
carefully to get useful results because theBER changes
quickly over a narrow range of SNRs. Use the follow-
ing guidelines when making measurements:

• set the voltage offset and gain to get the largest
waveform display that does not clip the signal

• turn on bandwidth limiting (20 MHz) and use a
sampling rate that avoids aliasing (auto sample
rate with about 5µs/division sweep rate for this
lab)

• use the ’scope’s measurement feature along with
measurement statistics. Average at least 20mea-
surements and continue until the average stops
changing.

• measure the variance of the noise voltage by
measuring the RMS voltage of the AC-coupled
input. AC coupling removes the DC (average)
component so that the RMS value is equal to the
variance3. e average voltage must, of course,
be measured with DC coupling or it will be zero.

Report

Submit a report in PDF format containing:

• the identification asked for in Lab 1

• the schematic of your final LFSRPRBS generator
including any corrections you made in the lab

• the spreadsheet showing your predicted and
measured values

• the graph showing the predicted and measured
BER versus SNR

3e variance is the second central moment:
√

x
2
− x

2.

4


