APSC 380 : INTRODUCTION TO MICROCOMPUTERS
1998/99 WINTER SESSION TERM 2

Reliability

The failure of computerized controls in some applications can have catastrophic results. This lecture describes how
faults can cause errors which in turn can lead to failures.

After this lecture you should be able to differentiate between availability and reliability. You should also be a able
to read a description of a system failure and identify and classify the fault, identify the resulting error and describe

strategies for reducing the likelihood of the faults.
I ntroduction

Computercontrolledsystemsare usedin mary ap-
plicationswherethefailureof thecontrolsystencan
have seriousconsequencesSuchapplicationsare
often found in the fields of transportatior(aircraft,
trains) , communication(data and telephonenet-
works),weaporsystemgradar missiles) andhealth
care(therapeuti@andmonitoringequipment).

The purposeof this lectureis to increaseaware-
nesf theconsequenceay systenfailure. Theanal-
ysis and designof highly-reliablecomputercontrol
systemss beyondthe scopeof this course.

Terminology

Availability is the fraction of time thata systemop-
eratescorrectly For example, the availability re-

tweenfaults,errorsandfailures.

Physical
defect

Perma
fault

Incorrect
design

Intermittent

fault

Unstable .
ta Service

failure

Error

marginal
hardware

Unstable Te
environment

fault

Operator
mistake

A faultis theincorrectoperatiorof partof thesys-
tem (e.g. temperaturesensorfailure). The error is
the effect of thatfault (e.g. heatsourceleft on con-
tinuously). And afailure is the failure of the system
to operateasdesirede.g.afire or damage).

quirementfor a telephoneswitch may be specified Cguses of Failures

as 99.99999%(unavailable for lessthan 5 minutes

peryear). Availability is normally specifiedonly for
systemghataredesignedo berepaired.

Reliability is theprobabilitythatthedevice or sys-
tem will operatecorrectly in a specifiedsituation.
For example,an air traffic control radarmay be re-
quiredto detecta certainsizeof planewith a proba-
bility of 99.999%. A manufcturermay specifythe
reliability of a systemover a giventime. For exam-

ple, the manuacturerof a disk drive may guarantee

thattheprobabilityof thediskfailing in thefirst 1000
hoursof operationis lessthan1%.

The following diagram (from Siewiorek and
Swarz,1992)attemptdo classifytherelationshifbe-

lecl6. tex

Siewiorek and Swarz (1992)

Theseauthorsclassify causesof failure in two di-
mensions:the physical location of the failure and
the time during the lifetime of the systemwhenthe
failureoccurs.

The physicallocation of the failure might range
from a componen{the lowestlevel) throughto the
interconnectiorf systemgthehighestievel). In be-
tween are the circuit level, and the software level
wherefailurescanhappen. Thereare different sta-
tistical methoddor estimatingavailability andrelia-
bility ateachlevel.

The time at which the failure can be caused

canrangefrom the designstage(the earliesttime)
throughto operation(the latesttime). Failurescan
alsobeintroducedduringthe prototyping,manufc-
turing, andtesttimes.

Neumann (1995)

It's alsopossibleto classifymostfaultsinto a num-
berof commoncateyories. For example,amongthe
causedistedin (Neumanri995)are:

e System Analysis - incorrect assumptionsor

poormodelsusedin the original systendesign

Requirement®efinition- animportantrequire-
mentleft out or incorrectlyspecified

DesignFlaws - errorsin thedesign

ImplementationErrors - includesfaulty con-
struction,or buggy software

Systemuse- operatorerrors

Hardwaremalfunction- hardwarefailuresin the
field

Environmentalproblems- heat flooding,etc

Evolution andMaintenance poorly-testedup-
gradesor faulty maintenance

Failure-Prevention Strategies

Having identified possible causesof failures, we
needto developstratgiesto minimizetheirimpacts.
Different approachesre usedto reducehardware
andsoftwarefailures. Table1 identifiessomeof the
techniques.

Hardware

Figure 1 summarizeghe variousstratgies usedto
reducethelikelihoodof hardwarefailures.

Fault Avoidance includes: conserative design
(operation in a benign (low-temperature, clean
power, etc)ervironment,useof reliablecomponents,
reduceccompleity, etc).

Fault Detection includes:performingthesameop-
erationtwice andcomparingtheresults,usingerror
detectingcodessuchasparity or CRCs,usingtimers

to detecthardvare (or software)thatis not perform-
ing asexpected anddetectingaccesseto protected
or non-istentmemory

Masking Redundancy includesredundantircuitry
that hidesfailures. This caninclude N-modulere-
dundang (NMR) with voting to selectthe output
that is most likely correct, errorcorrectingcoding
andlogic designthatusesadditionalgatesto correct
for partialfailures.

Dynamic Redundancy includes replacing failed
circuitry with backupcircuits. This canincludede-
tectingfailuresandselectingoneof N modules,and
designingfor reducedperformancein the caseof
somefailures.

Software

The above stratgies can also be usedto minimize
softwarefailures.

Fault avoidanceincludes emplging good soft-
wareengineeringorinciplessuchasmodularity data
hiding, sanity checks, regressiontesting, and bug
tracking.

Fault detectionand recovery can involve using
multiple independently-writtn programgo perform
the sametask and methodsto recover from errors
oncethey have beendetected.

Readings. Computer System Failures

The handoutcontainsexamplestaken from Neu-
mann (1995) and includesexamplesof failuresin
theareasf spaceexploration trains,controlsystems
androbotics.

Exercise: Choose several examples that you find interesting.
Try to identify the fault and the resulting error(s). Localize the fault
(level and time) and see if it fits into one of Neumann’s categories.
Identify any of the above fault-reduction strategies might have
helped avoid the failure.

References

Computer Related Risks, PeterG Neumann, ACM
Press,1995. Thisis aneasy-to-reathookthatis full
of examplesof therisksinvolvedin computetbased
systems Someof the materialisn’t relevantto com-
putercontrolsystemsut it’s all interesting.

TABLE 3-1 Classification of reliable techniques

Hardware Techniques

Software Techniques

Class

Technique

Class

Technique

Fault avoidance

Fault detection

Masking
redundancy

Dynamic
redundancy

Environment modification
Quality changes
Component integration level
Duplication
Error detection codes
M-of-N codes, parity, checksums,
arithmetic codes, cyclic codes
Self-checking and fail-safe logic
Watch-dog timers and timeouts
Consistency and capability checks
Processor monitoring
NMR/voting
Error correcting codes
Hamming SEC/DED," other codes
Masking logic
Interwoven logic, coded-state machines
Reconfigurable duplication
Reconfigurable NMR?
Backup sparing
Graceful degradation
Reconfiguration
Recovery

Fault avoidance
(software
engineering)

Fault detection

Masking
redundancy

Dynamic
redundancy

Modularity

Obiject-oriented programming

Capability-based programming

Formal proofs

Program monitoring

Algorithm construction

Diverse programming

Forward error recovery

Backward error recovery
Retry, checkpointing,
journaling, recovery blocks

1 Single-error correction/double-error detection

2 N-modular redundancy

Tablel: Approachesisedto reducehardwareandsoftwarefailures(from Siewiorek andSwarz,1992).

Rl SKS- LI ST, a “FORUM ON RISKS TO THE
PUBLIC IN COMPUTERSAND RELATED SYS-
TEMS” moderatedy the authorof the abore book
andavailablein the Usenemnewsgroupconp. ri sks.

Reliable Computer Systems (Second Edition),
Daniel P Siewiorek and RobertW Swarz, Digital
Press1992. Is a moretechnicaltreatmentof com-
puterreliability issues.

System

reliability
Nonredundant Redundant
systems systems
Fauit-tolerant
systems
Fault Fault Masking Dynamic
intolerance/avoidance detection redundancy redundancy
Masking On-line
detection/masking

|
] |]

Off-line On-line Off-line On-line Reconfiguration Retry On-line
detection detection detection detection repair

Off-line Off-line Off-line Off-line Recovery
repair repair repair repair

Off-line On-line
repair repair

Figurel: Stratgiesusedto reducethelikelihoodof hardwarefailures(Sieviorek andSwarz).

