Solutions to Assignment 5 Analog Interfaces

Question 1

```
#define CONTROL OxFFOO
#define DATA 0xFF01
#define READY 0x01
#define CONVERT 0x01
/* Do A/D converstion and return result in 2's complement
int convert ( )
{
    int c ;
    /* start conversion */
    spoke(CONTROL, CONVERT) ;
/* wait for conversion to finish */
    while ( speek(CONTROL) & READY == 0 ) ;
    /* get offset-binary A/D result */
    c = (unsigned char) speek(DATA) ;
    /* return as 2's complement */
    return c - 128 ;
}
```


Question 2

Specifications	Converter Type
1.10 bit, 50 kHz	(b) Successive Approximation
2.6 bit, 30 MHz	(c) Flash
$3.16 \mathrm{bit}, 5 \mathrm{~Hz}$	(a) Dual Slope

Question 3

Since the spacing increases by 1% and the frequency is proportional to the square root of the plate spacing, the frequency will increase by $\sqrt{1+0.01}$ and the new frequency will be 1.004988 MHz . In 100 ms the counter will count 100000 and 100498 cycles. This corresponds to an A/D resolution of between 8 (256) and 9 (512) bits.

Question 4

If the supply voltage is 5 volts, and the output of the gate is 0.7 volts, and the voltage across the diode is 1.5 volts, then by Kirchoff's voltage law the voltage across the resistor is $5-1.5-0.7=2.8$ volts. From Ohm's law a resistance of $2.8 / .008=350 \Omega$ will pro${ }^{\text {faduret }}{ }^{*}$ current of 8 mA . The power dissipated in the resistor is $8 \mathrm{~mA} \times 2.8 \mathrm{~V}=22.4 \mathrm{~mW}$. The power consumed by the LED is $8 \mathrm{~mA} \times 1.5 \mathrm{~V}=12 \mathrm{~mW}$.

Question 5

(a) Before the transistor reaches saturation the ratio of collector current to base current is the current gain. If the collector current is 5 A and the gain is 2500 , the base current is $5 / 2500=2 \mathrm{~mA}$.
(b) If the base voltage is 0.7 V and the gate output is 3.7 V , the voltage across the resistor is $3.7-$ $0.7=3.0 \mathrm{~V}$. For a current of $3 \times 2 \mathrm{~mA}=6 \mathrm{~mA}$, the resistance should be $3.0 / .006=500 \Omega$.
(c) The current dissipated by the resistor is $0.006 \times$ $3.0=0.018 \mathrm{~mA}$. The power dissipated by the transistor due to the current flowing into the collector is $0.4 \times 5=2 \mathrm{~W}$. The power due to the current flowing in the base circuit is neglible by comparison (0.7×0.006). The voltage across the motor is $12-0.4=11.6 \mathrm{~V}$. The power consumed by the motor is $11.6 \times 5=58 \mathrm{~W}$. The transistor is operating within its specifications for collector current ($5<15 \mathrm{~A}$), and maximum power dissipation $(2<90 \mathrm{~W})$.
(d) Since the case-to-heatsink thermal resistance $\theta_{C S}$ is negligible, the equation for the junction temperature is

$$
T_{J}=T_{A}+\left(\theta_{J C}+\theta_{S A}\right) P
$$

since T_{A} is 60 degrees $\mathrm{C}, \theta_{J C}=1.5$ degrees C per watt, P is 2 W , and we want $T_{J}<180 \mathrm{de-}$ grees C,

$$
T_{J}=60+\left(1.5+\theta_{S A}\right) 2<180
$$

so

$$
\theta_{S A}<(180-60) / 2-1.5
$$

and

$$
\theta_{S A}<58.5
$$

Question 6

The circuit shown in the question is not able to provide the correct output. The diagram should have been drawn as follows:

The best resolution would be obtained when the A/D input voltage spans the whole of the input voltage range (0 to 5 volts). From the equation (derived in a lecture) for the voltage output (v_{o}) of a summing amplifier we get:

$$
v_{o}=-22000\left(\frac{12}{R_{1}}+\frac{v_{i}}{R_{2}}\right)
$$

where v_{i} is the input voltage from the sensor.
Since this is an inverting amplifier, a lower input voltage should give a higher output voltage, thus an input of -5.250 V should give the output of 5 volts and an input of -5.050 V should give the output of 0 volts.

Using the last two values for v_{i} and v_{o}, we can solve for R_{1} :

$$
0=-22000\left(\frac{12}{R_{1}}+\frac{-5.050}{R_{2}}\right)
$$

$$
\frac{12}{R_{1}}=\frac{5.050}{R_{2}}
$$

$$
R_{1}=\frac{12}{5.05} R_{2}
$$

Substituting this expression and the first pair of input/output values we obtain:

$$
\begin{gathered}
5=-22000\left(\frac{12}{\frac{12}{5.05} R_{2}}+\frac{-5.250}{R_{2}}\right) \\
R_{2}=\frac{-22000}{5}(5.05-5.250)=\frac{-22000}{5}(-0.2)=880 \Omega
\end{gathered}
$$

and

$$
R_{1}=\frac{5.05}{12} 880=370 \Omega
$$

