Solutions to Assignment 2

Question 1

The controller inputs are the coin detector outputs (labelled X and Y). The controller output is the candy release signal (labelled R). The seven states correspond to the possible sum of money deposited: 0 , $5 \mathrm{c}, 10 \mathrm{c}, 15 \mathrm{c}, 20 \mathrm{c}, 25 \mathrm{c}, 30 \mathrm{c}$ which are encoded using three state variables $(A, B$, and $C)$ as $000,001,010$, $011,100,101$, and 110 . The state transition diagram is:

current state	input conditions		next state
000	0	0	000
000	0	1	001
000	1	0	011
000	1	1	101
001	0	0	001
001	0	1	010
001	1	0	011
001	1	1	110
010	0	0	010
010	0	1	011
010	1	0	100
010	1	1	110
011	0	0	011
011	0	1	100
011	1	0	101
011	1	1	110
100	0	0	100
100	0	1	101
100	1	X	110
101	0	0	101
101	0	1	110
101	1	X	110
110	X	X	000

where X is a "don't care" condition.
The release is only turned on when the count of money reaches 30 cents. The tabular description of the outputs is:

state	R
0 c	0
5 c	0
10 c	0
15 c	0
20 c	0
25 c	0
30 c	1

The next-state equations (not simplified) are:
$A^{\prime}=\overline{\mathrm{ABC}} X Y+\overline{\mathrm{AB}} C X Y+\overline{\mathrm{A}} B \overline{\mathrm{C}} X \overline{\mathrm{Y}}+\overline{\mathrm{A}} B \overline{\mathrm{C}} X Y+$ $\overline{\mathrm{A}} B C \overline{\mathrm{X}} Y+\overline{\mathrm{A}} B C X \overline{\mathrm{Y}}+\overline{\mathrm{A}} B C X Y+A \overline{\mathrm{BCXY}}+$ $A \overline{\mathrm{BC}} \overline{\mathrm{X}}+A \overline{\mathrm{BC}} X+A \overline{\mathrm{~B}} C \overline{\mathrm{XY}}+A \overline{\mathrm{~B}} C \overline{\mathrm{X}} Y+A \overline{\mathrm{~B}} C X$

$$
\begin{aligned}
& B^{\prime}=\overline{\mathrm{ABC}} X \overline{\mathrm{Y}}+\overline{\mathrm{AB}} C \overline{\mathrm{X}} Y+\overline{\mathrm{AB}} C X \overline{\mathrm{Y}}+\overline{\mathrm{AB}} C X Y+ \\
& \overline{\mathrm{A}} B \overline{\mathrm{CXY}}+\overline{\mathrm{A}} B \overline{\mathrm{CXX}} Y+\overline{\mathrm{A}} B \overline{\mathrm{C}} X Y+\overline{\mathrm{A}} B C \overline{\mathrm{XY}}+ \\
& \overline{\mathrm{A}} B C X Y+A \overline{\mathrm{BC}} X+A \overline{\mathrm{~B}} C \overline{\mathrm{X}} Y+A \overline{\mathrm{~B}} C X
\end{aligned}
$$

$C^{\prime}=\overline{\mathrm{ABCX}} Y+\overline{\mathrm{ABC}} X \overline{\mathrm{Y}}+\overline{\mathrm{ABC}} X Y+\overline{\mathrm{AB}} C \overline{\mathrm{XY}}+$ $\overline{\mathrm{AB}} C X \overline{\mathrm{Y}}+\overline{\mathrm{A}} B \overline{\mathrm{CX}} Y+\overline{\mathrm{A}} B C \overline{\mathrm{XY}}+\overline{\mathrm{A}} B C X \overline{\mathrm{Y}}+$ $A \overline{\mathrm{BCX}} Y+A \overline{\mathrm{~B}} C \overline{\mathrm{XY}}$

$$
R=A B \overline{\mathrm{C}}
$$

Schematic diagrams of the controller implemented directly from the sum-of-products expressions are given below:

In this particular design the candy release signal will be high (equal to one) for one clock period (1 ms).

Question 2

1. The state transition diagram showing the possible states, the values of the outputs for each state and the transition conditions is shown below:

2. The outputs for each state are:

state	RUN	SLOW	RESET
STOP (00)	0	0	1
SLOW (11)	1	1	0
FAST (10)	1	0	0

where the values after each state name are the binary encodings of the state using two state variables, A and B.
3. A tabular description of the state transition diagram is as follows:

current state	input conditions			next state
	X	Y	Z	
STOP (00)	0	X	X	STOP (00)
STOP (00)	1	X	X	SLOW (11)
SLOW (11)	X	0	0	SLOW (11)
SLOW (11)	X	0	1	FAST (10)
SLOW (11)	X	1	X	STOP (00)
FAST (10)	X	1	X	STOP (00)

4. The sum-of-products boolean expressions for each output signal and for the signal giving the next state are:
5. a schematic diagram for the controller is:

