APSC 380 : INTRODUCTION TO MICROCOMPUTERS
1997/98 WINTER SESSION TERM 2

Parallel 1/0 Ports

Parallel 1/0 ports can be seen as extensions of the CPU’s data bus. They transfer one word at a time between the CPU
and a peripheral. A parallel interface usually involves additional “ handshaking” lines and a well-defined protocol
to control the transfer of data. Parallel interfaces are used to transfer data with higher-speed peripherals such as
printers. We will study one simple example of a parallel interface, the parallel printer interface.

After this lecture you should be able to: (1) design simple input, output and bidirectional 1/O ports using registers,
tri-state buffers and and open-collector buffers; (2) describethe operation of a parallel printer interface; and (3) write
C programsto read and write the individual bits of an 1/0 port.

/O Ports

All microcomputer-based control systems must have
input/output (1/0) devices to move data between the
outside world and the computer. The interface be-
tween the CPU and these 1/0 devicesis through I/0
ports that appear as memory locations to the CPU.
Using these 1/0O ports the CPU can input (read) or
output (write) a number of bits (typically one byte)
at atime.

Typical examples of 1/0 portsinclude output ports
that drive LEDs, ports to scan a keypad, ports to
control machinery, etc. More complex 1/O inter-
faces such as floppy disk controllers or seria inter-
face chips usually contain several 1/0O ports. Some
ports are used to obtain status information about the
interface through “status registers’ and other ports
can control theinterface's operation through “ control
registers.”

For example, the printer interface on the IBM PC
has associated with it astatus port that can be used to
obtain certain status information (busy, on-line, out
of paper, etc). Theprinter interface also hasa control
port that can be used to reset the printer and set the
automatic line feed mode. In addition, there is an
output port that is used to output the character to be
printed.

Software Aspects

High-level languages such as C don't allow the pro-
grammer to read or write specific memory locations.
Special functions (often called peek() and poke())
are used to access the memory locations correspond-
ing to the 1/0 ports.

It's often necessary to set or clear a particular bit

lec7. tex

on an output port or to test the value of a particular
bit on an input port. This can be done with bit masks
and the bit-wiselogical operations AND and OR.

To set a particular bit(s), the current output value
is OR’ed with a bit-map which contains 1's in the
bit positions to be set. To clear a particular bit(s),
the current output value is AND’ ed with a bit-map
which contains 0's in the bit positions to be cleared.
To test the value of a particular bit, theinput valueis
ANDed with a bit-map which contains 1's in the bit
position(s) to be tested.

Here are some examples of C code that access /O
ports and manipulate the bits:

unsi gned char c ;

c = peek (0x60) ; /* read byte from address 0x60 */

if (c&0x80) { [/* test MShit */

if (c&0x07) { /* check LS3 bits */

c=c| Ox7; /* set LS 3 bits to 1s */

¢ =c & Oxcfh ; /* clear bits 5 and 4 */

poke (0x70, ¢) ; /* wite to I/Oport at 0x70 */

Often it’s not possible to read the value written to
an output port (i.e. the port is write-only). If indi-
vidual bits will need to be changed, it's necessary
to keep track of the most recent value written to the
port, modify this copy and then write theresult to the
I/O port location.

For example, the following code clears the LS bit
of avaluethat is being output to an 8-bit output port
whichislocated at address0x80. In this case the port
isoutput-only so a copy of the output valueiskept in
the variableout val .

outval = outval & O0xOfe ;
spoke (0x80, outval) ;

Exercise: The status port for a serial interface chip is located
at 1/O port 0x55. Bit 2 (bits are usually numbered from O starting
with the LS bit) will have the value 1 if a received character is
available to be read (from another port on the chip). Write a
section of C code that checks to see if there is a character ready

to be read.

I mplementation of 1/0O Ports

Output

Output ports are implemented using registers —
multi-bit flip-flops with a common clock. The reg-
ister’s datainputs (D) are connected to the CPU data
bus and the register’s clock input is driven by the
CPU write strobe (WR*). In addition, an address
decoder is used to make sure the clock is only as-
serted when the CPU is addressing the desired 10 or
memory address. Therising edge of the write strobe
loads the data into the register output (Q) and this
output stays fixed until the register iswritten again.

The following schematic shows how a register
could be connected to operate as an output port. The
CPU’s write strobe (WR*) is used to clock the data
into the register, but only if the address on the CPU
bus corresponds to the address of the output port:

8 8
data 7L>D Q7L>
N\
WR*
Ccs*
address 7L> address J
|IO/M* —=t decoder

The following timing diagram shows the relation-
ship between the signals. Note that the output is held
after the rising edge of the write strobe (WR*):

I nput

Input ports can a so beimplemented with aminimum
of hardware. A tri-state buffer is used to connect the
external digital input to the CPU’s data bus during
aread cycleif the CPU is addressing the memory or
IO address assigned to theinput port. Theread strobe
(RD*) is used to enable the buffer so that it connects
the input to the CPU data bus.

The following schematic shows how a register
could be connected to operate asa parallel input port.
The CPU’s inverted RD* strobe (RD) is used to en-
able the output of a tri-state* buffer when RD is ac-
tive and the address correspondsto the address of the
input port:

parallel 8/ 8/ CPU data
input 7/ oe/~ Dbus (D0-D7)
RD —>1
address 7L> address J
|O/M* —=t decoder

The value read by the CPU will be the value on
theinput port at the time that the peek() function was
called.

Bi-Directional 1/0 Ports

By using open-collector? a outputs on an output port
it'spossibleto use the same signal pinsfor both input
and output. The open collector outputs are driven
high by pull-up resistors and can be driven low by
either the output port or by an external device. An

1A tri-state output can be in the normal high and low states as
well as athird, “high-impedance,” state. In this state the output
is effectively disconnected from the rest of the circuit.

2An open-collector output can only pull its output to ground,
it cannot drive it to ahigh level.

input port is attached to these lines. The state of the
I/O interface lines can be read by reading the input
port.

Exercise: To what value must the outputs be set in order to

be able to read from an external device?

Addressand 1/0 Decoding

The design of address decodersfor 1/0O portsis simi-
lar to the design for memory systems. A typical 1/0
interface will only require afew (typically less than
16) ports (addresses). On some CPUs (such asthose
from Intel) there are separate 1/0 and memory ad-
dress spaces. |In this case the decoder must enable
the port only for the appropriate address space.

“Centronics’ Parallel Printer Port

We will use the “Centronics’-compatible parallel in-
terface as an example of a parallel interface. Other
parallel interfaces such as SCS| and | EEE-488 oper-
ate in a similar fashion but have more complicated
protocols to allow the interface to be shared by sev-
eral peripherals.

The parallel printer interface was designed to al-
low computers to drive printers. There are eight
data lines, four output (to printer) handshaking sig-
nals and five input (from printer) handshaking sig-
nals. Of the handshaking signals, only one input sig-
nal (BUSY) and one output signal (STROBE*) are re-
quired. The other handshaking signals are used for
things such as out-of-paper, on-line, and error sig-
nals.
| e [J

STROBE

Printer

BUSY.

Computer

To write a value to the printer the data bits are
put on the eight data lines (DO to D7) and the
STROBE* output signal is set low for a minimum of
0.5 useconds. When the STROBE* goes low, the data
is accepted by the printer and the printer turns the
BUSY line high to indicate that it has accepted the
character, that the printer is busy and that no more
data should be sent.

When the printer hasfinished processing the char-
acter it turnsthe BUSY line back to alow level and the
computer can then send the next character.

data for previous character
valid data
Data

STROBE | I
printer ready to

accept next character
BUSY

- time
N printer becomes busy

This interface uses TTL signa levels (about O
volts for low and about 5 volts for high).

There are additional handshaking lines to control
various printer features (e.g. auto line feed) and to
indicate various printer status conditions (e.g. out of
paper).

There original IBM PCs parallel port was an
output-only Centronics-compatible interface but in
recent designs the port can also be configured as an
input. The maximum speed usually depends on the
software use but istypically 50 to 100 kB/s.

Small Computer System Interface
(SCSI)

This is a type of paralel interface that allows for
bidirectional datatransfer and for up to 8 hosts (“ini-
tiators’) and peripherals (“targets’) to be connected
together on the same bus. The SCSl interface is
well defined and and is available on many different
computers. It is widely used to connect computers
to disk and tape drives, CD-ROMSs, scanners, high-
speed printers, etc.

The SCSI interface includes a protocol for arbi-
trating access to the bus by initiators and for select-
ing a specific target. The actual data transfers over
the SCSI bus use a similar request/acknowledge pro-
tocol with each byte transfer being acknowledged by
the target before another byteis transferred.

Depending on the speed of the peripheral and the
host interface the bus can transfer data at up to sev-
eral megabytes per second. The SCSI devices at-
tached to the bus are el ectrically connected up in par-
allel with each device configured to respond to a par-
ticular bus ID number (ID).

The physical interface uses a 50-pin connectors
with two connectors on each device so that they can
be daisy-chained. Because of the high bus speed
care has to be taken to properly terminate the busin
it's characteristic impedance to minimize reflections.

Like the Centronics interface the SCSI bus also uses
TTL-level signals but it needs open-collector or tri-
state drivers.

Another advantage of the SCSI interfaceis that it
defines a set of common commands for deviceswith
similar characteristics. This allows the same soft-
ware to drive different devices. For example, the
same generic commands (rewind, skip forward, etc)
can beused to control tape drivesfrom different man-
ufacturers.

Although a SCSI interface can be built using a
simple paraldl interface and programmed i/o, this
type of interface is too slow for most applications.
SCSl interfaces are available that implement the
SCSI protocol and can transfer data using directly
from the SCSI bus to memory using (direct memory
access- DMA).

HPIB/GPIB/IEEE-488

The General PurposeInterface Bus (GPIB) isanother
bidirectional interface. Like the SCSI bus it alows
multiple bus masters (“talkers’) and slaves (“listen-
ers’). It was developed by HP who named it HPIB
(HPInterface Bus). The standard is called | EEE-488.
This busis used mostly for control of |aboratory in-
struments.

