
APSC 380 : INTRODUCTION TO MICROCOMPUTERS

1997/98 WINTER SESSION TERM 2

Digital Logic Design
This lecture reviews combinational and sequential logic design and shows how state machines can be implemented as
digital logic circuits.
After this lecture you should be able to design a combinational or sequential logic circuit from a description of its
behaviour.

Applications for Logic Circuits

Often a controller is needed that is too simple for a
microcomputer implementation or an interface is re-
quired between a microcomputer and its sensors or
actuators. Sometimes “glue” logic is required to in-
terface a peripheral chip to the microprocessor. In
other cases it may be necessary to implement oper-
ations that cannot be done fast enough under com-
puter control. In these situations we may need to de-
sign digital logic circuits. In this course we will only
cover the design of relatively simple circuits.

Combinational Logic

A combinational logic circuit is one where the out-
put depends only on the current input and not on past
inputs. We will learn three ways to represent com-
binational circuits and show how to convert between
them.

The first type of description is a truth table. A truth
table shows all of the possible input values and the
corresponding output values.

The second representation is as an equation that
defines the value of each output variable as a function
of the input variables. We can use boolean algebra to
simplify the resulting equations.

The final type of description is a circuit diagram
(typically called a “schematic”) that shows the inter-
connection of hardware logic gates. A gate is a cir-
cuit that implements a simple boolean logic function.

Truth Tables

A truth table is simply a table showing the value of
each output for each possible combination of the in-
put variables.

For example, the truth table for a circuit with 3-
inputs (labelled a b c), and two outputs (x and y)
might begin as follows:

a b c x y
0 0 0 0 1
0 0 1 0 0
0 1 0 1 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0

Boolean Algebra

It is also possible to write an algebraic expression
for each output variable as a function of the input
variables. In boolean algebra we use variables which
can take on values of true or false. Typically true is
represented as the value one or a high voltage and
false as zero or a low voltage. However the opposite
convention (“active low”) logic is also common.

The logical AND function is expressed as implied
multiplication and logical OR as addition. The nota-
tion a is used for the logical complement (NOT) of
a.

Sum of Products Form

From the truth table for a combinational circuit we
can write an expression for each output as a function
of the input variables.

One way to do this is as a sum of products. Each
term in the sum corresponds to one line of the truth
table in which the desired output variable has a value
one. The term is the product of the input variables
(if that variable is 1) or their complements (if that
variable is 0).

lec5.tex 1



For example, the variable x above takes on a value
of 1 in three lines (the third, fourth and sixth lines)
so there would be three terms. The first term cor-
responds to the case where the input variables are
a 0, b 1 and c 0. So the term is abc. Note that
this product will only be true when a, b and c have
the desired values, that is, only for the combination
of inputs on the third line.

If we form similar terms for the other lines where
the desired output variable takes on the value one and
then sum all these terms we will have an expression
that will evaluate to one only when required and will
evaluate to zero in all other cases.

Exercise: Write out the expressions for the two variables in

the table above (assume the output is zero for the input condi-

tions that are not shown).

Logic Identities

Having written down the expression for the desired
output we can use a number of boolean logic identi-
ties to simplify the expression. This is normally used
to simplify the resulting hardware implementation.

There are a number of basic identities that can be
obtained by inspection:

ABC AB C A BC
AB BA
AA A
A1 A
A0 0

A B C AB AC
A AB A

A BC A B A C
A B C A B C A B C

A B B A
A A A
A 1 1
A 0 A

1 0
0 1

A A 1
AA 0
A A

A AB A B

There are also two useful relations called DeMor-
gan’s theorem:

(A+B) AB
AB A B

Logic Gates

Having simplified the algebraic form of the combi-
national logic circuit we can then proceed to draw a
circuit diagram using logic gates that will implement
the desired function. These logic gates are available
in the form of integrated circuits. Chips are available
to implement all of the common boolean logic oper-
ations (AND, OR, NAND, NOR, XOR, NOT, etc.).

Exercise: Simplify the logic expressions for x and y.

It is possible to synthesize all of the logic functions
using only NAND gates or only NOR gates.

Exercise: Design a logic circuit called a full adder. It should

have three one-bit inputs (two addends and a carry input) and

should generate a one-bit result plus a carry-out. Individual full

adders can be chained together to create multiple-bit addition

circuits.

Sequential Logic

A sequential logic circuit is one where the output de-
pends not only on the current input but also on the
past inputs. These circuits are thus said to have mem-
ory.

We will start by showing how a sequential logic
circuit that “remembers” its past input can be put to-
gether. This type of circuit is called a flip-flop. Then
we will describe the operation of one of the most
common types of flip-flops, the synchronous D (de-
lay) flip-flop.

Sequential logic circuits are state machines. Once
the operation of the required circuit is specified as a
state machine, the design of the circuit can proceed
in a straightforward fashion. We will see how to do
this and a design a simple controller as an example.

The RS latch

The schematic of an RS latch is as follows:

2



R

S

Q

Q

The circuit has two inputs R (reset) and S (set) and
two outputs Q (the state of the flip-flop) and Q (the
complement of Q).

If R=1 and S=0, then we can show that the only
possible output values are Q=0 and Q=1. Similarly
if R=0 and S=1 we can show that Q=1 and Q=0.

When both R=0 and S=0 the outputs are func-
tions only of themselves and retain their values. Thus
when both inputs are low the circuit remembers the
previously set state.

When both R=1 and S=1 both outputs go low and
this violates the condition that Q and Q have comple-
mentary values so this set of inputs is not allowed. A
circuit that uses this RS flip-flop should therefore be
designed so that these conditions don’t happen (such
as by using additional logic at the inputs).

The D flip-flop

The D (delay) flip-flop has a two inputs, the next-
state input (D) and a clock input (usually labelled
with a triangle on the schematic symbol).

D Q

Q

The D flip-flop has the property that the state only
changes when the clock signal changes state (for ex-
ample on the positive edge, i.e. when going from
low to high). In the truth table for the flip-flop this is
shown by an arrow.

D clock Q Q
1 1 0
0 0 1
X 0 Q(t-) Q(t-)

Usually many (or all) of the flip-flops in a cir-
cuit will have the same signal applied to their clock

inputs. This synchronous operation guarantees that
their states will change at the same time.

D flip-flops often have additional inputs that can
preset the state to zero or one.

Design of Sequential Logic Circuits

The first step in the design of a sequential logic cir-
cuit is to specify the inputs, outputs, states, and tran-
sition conditions just as in the design of any other
state machine.

Next we choose a sufficient number of flip-flops to
represent all of the possible states. n flip-flops can be
used to represent up to 2n states (e.g. 3 flip-flops can
encode up to 8 states).

We then build a table similar to the tabular form
of the state machine representation that has one line
for for each possible combination of inputs and flip-
flop states. On each line we also show the flip-flop
inputs required to move to the desired next state and
the required outputs for that current state.

The last step is to design a combinatorial circuit.
This circuit has two sets of inputs: the outputs of the
flip-flops (representing the current state) and the in-
put to the sequential circuit. The circuit also has two
sets of outputs: the inputs of the flip-flops (represent-
ing the next state) and the output of the sequential
circuit.

We also need to apply a clock signal to the clock
inputs of the flip-flops. The sequential circuit will
change state (although perhaps to the same state) at
every positive edge of this clock signal.

Example

We need to design a controller for a simple drilling
machine. The machine is designed to drill holes in
wooden boards that are passing by the machine on a
conveyor belt.

The controller has two inputs: a sensor that tells us
that a board is in position (BOARD=1) and a sensor
on the drill that tells us that the hole has been drilled
through (DONE=1). There are two outputs: a sig-
nal to drive a pneumatic plunger that grabs the next
board coming along the belt, preventing it from con-
tinuing and holding it in place for drilling (HOLD=1)
and a signal that turns on the drill (DRILL=1).

3



The controller must actuate the board “capture and
hold” mechanism and wait until a board is in position
(state = WAIT). Then it must run the drill until the
hole is drilled (state = DRILL). Then it must release
the board and wait until the board leave the drilling
station (state = RELEASE) and go back to wait for
the next board to come along. We will ignore error
conditions in this example.

From the design specification we can identify
three states and draw the state diagram.

We can arbitrarily assign the controller states to
three of the four possible combinations of flip-flop
states.

Then we build the tabular form of the state dia-
gram and include the following columns:

the current state name

the flip-flop values for the current state

one line for each possible set of input conditions
for each state

the output values for each of these lines

the next state name for each of these lines

the flip-flop values for these states

The final step is to develop the combinational cir-
cuits for each of the flip-flop inputs and each of the
controller outputs. These will be functions of the cur-
rent flip-flop outputs (the current state) and the in-
puts. These functions can be written in sum of prod-
ucts form by inspection of the table.

These functions can then be simplified if possible
and the schematic diagram drawn from these expres-
sions.

4


