
APSC 380 : INTRODUCTION TO MICROCOMPUTERS

1997/98 WINTER SESSION TERM 2

Number Bases and
C’s Bitwise Operators

This lecture reviews conversion between decimal, binary and hexadecimal numbers, describes C’s bitwise logical
operators and shows how binary numbers are represented by voltage levels.
After this lecture you should be able to: convert a decimal value to and from binary, convert a binary value to and
from hexadecimal, evaluate expressions that use C’s bitwise logical and shift operators, and convert between bus
signal levels and a numeric value.

Number Systems

We commonly use decimal notation to express the
value of a number. However, in digital logic hard-
ware (including computers) numbers are represented
with two-valued (binary) values. To be able to
deal with the hardware representation of numbers
we need to be able to convert between the decimal
and binary representation of numbers. Note that the
value of a number does not change when we express
it in a different base.

Binary Representation

In the decimal number system each digit position
represents a different power of ten. The rightmost
digit gives the number of multiples of 100 in the num-
ber, the next digit gives the multiples of 101, and so
on. For example, 105 5 100 0 101 1 102.

Binary numbers work in the same way, but since
only two values are possible for each digit, each po-
sition represents a different power of two. The right-
most digit gives the number of multiples of 20, the
next digit gives the multiples of 21, and so on. For
example, 110 0 20 1 21 1 22 0 1
1 2 1 4 6(base 10).

The table below shows the decimal values of pow-
ers of 2 for exponents from 0 to 15:

exponent value
0 1
1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512

10 1024
11 2048
12 4096
13 8192
14 16384
15 32768

To convert from binary to decimal we just need to
add up the powers of two corresponding to the bit
positions that are ’1’s.

Exercise: Convert the binary number 1001 0110 to a decimal

number.

To convert from decimal to binary it is necessary
to find the appropriate combination of powers of two
that will add up to the desired decimal number. This
is done by repeatedly subtracting the largest possible
power of two until the remaining value is zero.

For example, to convert the decimal value 35, we
find the largest power of two less than or equal to
35: 32 (25). The remainder is 35 32 3. The
next largest power of that can be subtracted is 21 2.
Subtracting this value leaves 3 2 1. The next pos-
sible power of two is 20 1. Subtracting this value
leaves 0. Therefore 35 1 24 0 23 0 22

1 21 1 25 which is 10011 in binary.

lec3.tex 1

Exercise: Convert the decimal number 86 to a binary num-

ber.

Hexadecimal Representation

Binary numbers are too verbose for many purposes
so we often use use hexadecimal (base 16) numbers.
Hex numbers are less verbose but also easier to con-
vert to binary. Since the base is 16, we need 16 dif-
ferent digits. We use the digits 0 to 9 and the letters A
to F. The following table shows the the 16 hexadec-
imal digits and the corresponding values in decimal
and binary.

decimal binary hex
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

To convert from binary to hex we group the bi-
nary digits into groups of 4 starting from the least
significant (rightmost) digit. The we just look up the
corresponding hexadecimal value in the table.

Exercise: Convert the binary number 1101000 to hexadeci-

mal.

Hex notation is used because the conversion be-
tween hex and binary is much simpler than between
decimal and binary. This is becase each hex digit
represents exactly 4 bits.

To convert a decimal number to hex you can first
convert the number to binary and then group the bits
into groups of 4 bits starting from the right. These
4-bit patterns are then easily converted to hex digits.

Similarly, to convert a hex number back to deci-
mal first convert it to a binary number and find the
corresponding decimal value.

Exercise: What are the binary and decimal representations

of the hexadecimal value 0x3F?

Hexadecimal and Octal Constants in C

We can use hexadecimal notation in C programs by
prefixing the constant using the characters ’0x’. The
hex digits may be in upper of lower case. For exam-
ple, the constant 0x21 has the value 33 (decimal).

C also has octal (base 8) constants which are de-
noted by prefixing a number with a zero. For exam-
ple the constant 010 has the value 8 (decimal). Octal
notation is no longer widely used.

Unfortunately, C does not have binary constants.

C’s Bitwise Logical Operators

These operators operate bit-by-bit on the binary rep-
resentation of their operands.

The bitwise complement operator, ˜, is a unary op-
erator similar to the logical negation operator and has
the same precedence. However, it inverts the values
of the bits in the binary representation of the operand.
If a bit is 0, the bitwise negation sets that bit in the
result to 1 and vice versa. For example, ˜ 2 has the
value 1 (2 is 10 and 1 is 01 in binary).

The bitwise ‘and’, ‘exclusive-or’1 and ‘or’ oper-
ators are &, ˆ, and |. They result in the operation
being applied to the bits in the binary representa-
tions of their operands. Both operators have lower
precedence than the comparison operators but higher
precedence than the logical operators. The bitwise
‘and’ has a higher precedence than the bitwise ‘or’.

Exercise: What are the values of the following expressions?

(7 ˆ 5) | 5
0xAA & 15

Note that there is an important difference between
logical and bitwise logical operators. For example,
the expression 5 && 2 is 1 while 5 & 2 is 0.

Exercise: Why?

Bit Shift Operators

C also has bit-shift operators. These operators shift
the bits in the left operand left (<<) or right (>>)
by the number of bit positions given by the second
operand. For example, x>>2 shifts bits in the binary

1The exclusive or operator gives 0 if the two bits are the same
and 1 otherwise.

2

representation of x right by 2 bits. If x had the value
0x4 (0100 binary), the value of x>>2 is 0x1 (0001).

Exercise: What is the value of 0x4 >> 2? How about 0x4

<< 1? How does shifting the bits in a number left by 1 position

affect the value of a number? How about shifting them right?

Each size of integer can only hold a limited num-
ber of bits (8, 16 or 32). Thus each shift causes one
bit to be shifted “off the end” and another bit to be
shifted in at the other end. The bit that is shifted
out disappears. For unsigned integers a zero is al-
ways shifted in. For right shifts on signed integers
the value of the most significant bit is duplicated and
shifted in.

Binary Numbers and Logic Levels

Computers represent binary values by using two
voltages. For example, one way is to use 0 volts to
represent a binary ’0’ and 5 volts to represent a bi-
nary ’1’. These voltages, sometimes also called low
(L) and high (H), are called logic levels.

A binary number can be represented by a collec-
tion of 8 (for a char) or 16 (for an int) signals2.
Each signal represents a particular bit of a binary
number. A group of related signals is called a bus.

Exercise: The connector used between a PC and a printer

has 25 signal pins. Pin numbers 9 to 23 carry signals generated

by the PC that provide the printer with the ASCII value of the

character that should be printed. You measure the following volt-

ages: 0,5,0,0, 5,0,0,0 on the signal pins. What character is the

printer trying to print?

Note that the opposite convention for logic levels
(H for 0 and L for 1) is also often used.

2A signal is a voltage that carries information.
3in order from most significant to least significant bit.

3

