
APSC 380 : INTRODUCTION TO MICROCOMPUTERS

1997/98 WINTER SESSION TERM 2

Introduction to C
This lecture provides an introduction to the features of the programming language ’C’ that you’ll need to do the labs.
We will skip some important parts of the C language including: pointers, structures, floating point variables, and the
switch statement.
After this lecture you should be able to:

explain the following terms: variable, statement, operator, precedence

evaluate expressions involving integer variables, constants, and the operators described in this lecture

write a simple C program including a main() function declaration, integer variable declarations, and the follow-
ing statements: expression, if/else, while, and for

predict the result of executing such a program

declare an array

write expressions that reference an array element

write C code that iterates over all of the elements of an array using either an element count of a terminator array
value

declare a function including function argument types and return values

give the values of function parameters for a given function call

define the terms array, index, function, argument, and return value

The Structure of a C program

Here’s a simple C program:

main ()
{

int i ;

i = 0 ;
while (i < 4) {

printf ("%d\n", i) ;
i = i + 1 ;

}
}

If you compile and then execute this program the
computer will print the integers between 0 and 3.

The first two lines are required by all C programs
and define a function called main. The braces (“curly
brackets”) on the second line and the last line mark
the start and end of the function.

The computer executes the statements in order,
starting with the first statement in the function called
main and ending after the last statement in the func-
tion main is executed.

The line int i ; is a statement that declares an
integer variable called i. A variable is an area of the

computer’s memory that is used to store numbers.
The line i = 0 ; is another statement – an ex-

pression statement. This particular expression state-
ment sets the value of the variable i to zero.

The line while (i < 4) is yet another type of
statement, a while statement. The computer repeat-
edly evaluates the expression within the parentheses
and executes the statements between the braces while
this expression is true.

The line starting with printf() is another expres-
sion statement. In this case the expression statement
contains only the name of another function which is
to be executed. This particular function (printf)
causes the value of the variable i to be printed on
the screen.

The next line is another expression statement that
increments the value of the variable i.

Exercise: What do you think would be printed out if the order

of the two statements within the while ’loop’ was interchanged?

The following sections give more detailed infor-
mation about variables, expression statements, and
the two basic types of control statements: if/else
and while statements.

lec2.tex 1

Variable Declarations

We will only need to use integer variables. These
come in three sizes called char, int and long. Each
size can be signed or unsigned and can take on the
range of values shown below.

variable size unsigned signed
type (bits) range range
char 8 0 – 255 -128 – 127
int 16 0 – 65536 -32768 – 32767
long 32 0 – 232 231 – 231 1 1

Variables have to be “declared” at the beginning
of the function where they are used. A variable is
only in existence while statements in that function
are being executed and the values of variables are
forgotten when the function terminates.

Here are some examples of variable declarations:

int day, month, year ;

unsigned int cycles ;

char ppc ;

Exercise: What are the possible values for each of these

variables?

The first character of a variable or function name
must be a letter or underscore, followed by other let-
ters, underscores or digits. Case is significant: i and
I are two different variables.

There are certain reserved names that can’t be used
for variable names. Keywords such as if, while,
int, etc. are reserved. A list of reserved keywords
is available from the Turbo C help index screen (type
F1 twice and select “Keywords”).

Exercise: Make up three valid and three invalid variables

names.

Since computers can only work with numbers, let-
ters are converted to numbers when they are read into
the computer and converted back to characters when
they are displayed. The standard mapping of char-
acters to numbers is called “ASCII.” For example,
the number used to represent the letter ’a’ is 97 and
the number for the space character is 32. ASCII en-
coding only defines values from 0 to 127 so a char
variable is typically used to store the code for a char-
acter.

Constants

Constants are similar to variables except that their
values cannot be changed. Integer constants can be
expressed as a number (e.g. 12). We can also spec-
ify the ASCII value of a particular character by sur-
rounding that character with single quotes (e.g. ’e’).

Expressions

Expressions describe how new values are computed
from the values of existing variables and constants.
Expressions are built up from variables, constants
and operators.

Operators are characters denoting operations to be
performed on variables such as addition, compari-
son, and assignment.

For now, we will only study a few of the opera-
tors available in C. The following is a list of the most
common operators and examples of expressions us-
ing them:

the arithmetic operators, * / + - , result in the
product, quotient, sum and difference of the val-
ues on the left and right. As usual, multiplica-
tion and division are performed before (“have
higher precedence than”) addition and subtrac-
tion. Otherwise operations are done left to right.

1 + 3 * 5 / 4

parentheses are not really operators but are used
to change the order in which parts of an expres-
sion are evaluated

(2 + ’ ’) * 3

comparison operators (< > >= <= == !=)
compare the value on the left and right of
the operator. The result is the value 0 if the
comparison is false, 1 if it is true. Comparison
operators have lower precedence than the
operators described above.

(-1 < (3 != 2)) * (5 > 1)

2

the assignment operator, =, assigns the value of
the expression on the right to the variable on
left. The result is the value that is assigned. As-
signment operators have lower precedence than
the operators given above.

b = 5
c = b - (a = 3)

the logical operator ’!’ is the logical negation
operator. It is a unary operator – it only oper-
ates on the value on its right. The result of the
logical negation operator is the value 1 if the
value on the right is zero and 0 otherwise. Log-
ical negation has the highest precedence of all
operators discussed so far.

the logical operators && and || result in the log-
ical ‘and’ and ‘or’ of the values on their left and
right. The result of a logical ‘and’ is 1 if both
values are non-zero and 0 otherwise. The result
of a logical or is 0 if both values are zero and
1 otherwise. Both operators have lower prece-
dence than the other operators discussed so far
and ‘and’ has a higher precedence than ‘or’.

the unary operator ++ is used in C to increment a
variable by one. If the operator is placed before
variable (e.g. ++i) the variable is incremented
before its value is used in the expression. If the
operator is used after the operator (e.g. i++)
the initial value of the variable is used in the
expression. This operator has a lower prece-
dence than any other unary operator but a higher
precedence than non-unary operators.

Exercise: If n has the value 5, what is the value of the

expression ++n - 1? What is the value of the expression

2 * n++?

The -- operator is used in the same way as ++
but it decrements the variable by 1 instead of
incrementing it.

Exercise: What are the values of the following expressions?

! (3 || 1 + 1)

! 3 && 1

0 || (1 > 0) && 1

We will discuss other operators as we need them.
A complete list of operators and their precedence
is available from the Turbo C help screen (type F1
twice and select ”Precedence”).

Exercise: What are the values of each of the above expres-

sions (the ASCII value for a space is 32)?

Statements

Expression Statement

The most common C statement is an expression
statement. It is simply an expression terminated by a
semicolon. For example:

i = i + 1 ;

if/else Statement

This statement causes only one of two groups of
statements to be executed depending on the value of
an expression. If the value of the expression is non-
zero the statements in the if portion are executed,
otherwise the statements in the else portion (if any)
are executed.

if (<expression>) {
<statements>

} else {
<statements>

}

Exercise: What is the value of ’i’ after executing the following

statements?

b = 4 ;
if (b * b == 4) {

i = 1 ;
} else {

i = 0 ;
}

while statement

As explained previously, the while statement is used
to repeatedly execute a group of statements while the
controlling expression is non-zero.

while (<expression>) {
<statements>

}

3

Exercise: How many times will the statement inside the

‘while loop’ be executed?

b = 2 ;
while (b <= 16) {

b = b * 2 ;
}

Exercise: What will be printed by the program above?

Arrays

An array is an area of the computer’s memory that
can store a several values at the same time. Each
individual element of the array is accessed by using
an integer value called an index. We can picture an
array as a row of identical containers each of which
can hold one value.

Arrays are declared by putting the number of el-
ements (which must be a constant) in brackets after
the variable name. For example, the following state-
ment declares an array that can store four character
values:

char x [4] ;

Exercise: Give the declaration for an array variable called

tab of 256 integers.

Exercise: How many array elements are declared in the fol-

lowing declaration: int x[’1’] ; ?

An individual element of an array can be refer-
enced by using the array name followed by the index
value enclosed in brackets. Allowable index values
run from zero to the number of elements in the ar-
ray minus one. For example, to increment the first
element of the above array we could write:

x[0] = x[0] + 1 ;

Exercise: Write an expression whose value is two times the

value of the second element of the array x.

Exercise: Write an expression whose value is non-zero if the

first and last elements of the array x are equal.

The value of the index can be any expression, not
simply a constant. For example, the following state-
ments have the same effect as the previous example:

i = 0 ;
x[i] = x[i] + 1 ;

Iterating over Arrays

A very common programming task is to perform the
same operation on all of the elements in an array.
This can be done by using a while-loop, and an in-
dex variable which is incremented in the loop. For
example, the following statements find the sum of
the values in an array of four ints:

int i, sum, x[4] ;
...
sum = 0 ;
i = 0 ;
while (i < 4) {

sum = sum + x[i] ;
i = i + 1 ;

}
...

Exercise: How many times will the loop be executed? What

would happen if the order of the two statements within the loop

was interchanged?

Sometimes it’s more convenient to mark the end
of an array with a special value rather than explicitly
keeping track of the size of the array. For example,
we might use a negative value to mark the end of an
array that contained only positive values.

Exercise: What statements must be used inside the loop in

the following code to compute the sum of the values in the array

x if a negative value is used to mark the end of the array?

int i, sum, x[4] ;
...
sum = 0 ;
i = 0 ;
while (x[i] > 0) {

...
}
...

The for Statement

Iterative loops are used so often that most computer
languages have special language constructs to imple-
ment them. In C this is done with a statement called
a for loop.

Every iterative loop must have three parts: initial-
ization of the loop control variable (done once before
the start of the loop), testing of the loop variable be-
fore each execution of the statements in the loop, and
the increment (or other change) of the loop variable

4

at the end of the loop. The for loop allows us to de-
fine a loop more compactly by specify each of these
actions in one statement. Here’s an example of a for
loop:

for (i=0 ; i<10 ; i++) {
sum = sum + x[i] ;

}

The for loop is similar to a while loop except
that it contains three expressions in parentheses after
the for keyword. The first expression is evaluated
immediately before the start of the loop. The second
expression is evaluated before each iteration of the
loop and terminates the loop if it evaluates to zero.
The final expression is evaluated at the end of each
iteration of the loop. The above code is equivalent to
the following:

i=0 ;
while (i<10) {

sum = sum + x[i] ;
i=i+1 ;

}

Exercise: Use a for loop to print all the powers of 2 with

values between 1 and 256.

Nested Loops

It’s often necessary to use one loop inside another.
These are called nested loops. A different loop vari-
able needs to be used to control each loop. For exam-
ple, the following code would print all the possible
combinations of two dice:

for (i=1 ; i<=6 ; i++) {
for (j=1 ; j<=6 ; j++) {

printf ("%d and %d\n", i, j) ;
}

}

Functions

The concept of a function as an operation that maps
one set of values into another set of values should be
familiar from mathematics. A typical example would
be a trigonometric function such as cos .

A similar construct is available in C. For exam-
ple, the function isdigit() can be used to deter-
mine whether a value corresponds to one of the

codes between ’0’ and ’9’. In this case the func-
tion isdigit() has a non-zero value if the value
being tested is a digit and 0 otherwise. The value
to be tested is supplied to the function by enclos-
ing it parentheses immediately following the func-
tion name. The value passed to the function is called
the “argument” and the value of the function is called
the “return value.”

Functions are used in expressions. For example,
the following expression has the value 0:

isdigit(’x’)

while the following function has a non-zero value:

isdigit(’0’)

Exercise: What are the values of the following expressions?

(isdigit(’5’) == 0) * 5

(isdigit(’ ’) == 0) - 1

Why Use Functions?

A C program consists mainly of function declara-
tions. A simple program may only declare a function
called main()2, but non-trivial programs will contain
many function declarations.

The main purpose of functions is to break up a
long program into small parts which are easier to
understand. Each function should perform a rela-
tively simple task which can be easily understood,
programmed and tested. A rule of thumb is that a
function should fit on one screen (about 25 lines). If
the function is longer than this it probably can (and
should be) broken down into two or more simpler
functions.

A typical program consists of a hierarchy with
a main function which uses (calls) other functions;
these functions in turn call other functions and so on.

A function communicates with other functions
through the values of its arguments and through the
values is returns. This isolation between functions
makes it easier to debug a function and to make sure

2Parentheses used after a name are used to indicate that the
identifier is a function rather than a variable.

5

that it behaves as desired. It also makes it more
likely that the same function can be re-used in a fu-
ture project.

Another reason to create a function is when the
same (or similar) operations needs to performed on
different variables. For example, if we had to com-
pute the lengths of various strings in different places
in a program, we could write a function that took
a string (character array) argument and returned an
integer. Instead of writing similar code in each place
where we need to find the length of the string we
could just write the function once and call it in each
place where the length of a string has to be computed.

Local Variables

Variables declared inside a function are only “vis-
ible” within that function. A variable of the same
name in another function is considered to be a dif-
ferent variable. Thus you cannot refer to a variable
declared in one function from another function. For
this reason they are known as “local” variables.

The value of a local variable is undefined when a
function begins unless that variable is a parameter or
it is explicitly initialized. The value of a local vari-
able is lost each time the function returns.

To pass values between functions you need to use
function arguments and return values.

Function Declarations

Here’s an example of how the isdigit() function
might be declared:

/* return 1 if c is a digit */

int isadigit (c)
char c ;
{

int v ;

if (c >= ’0’ && c <= ’9’) {
v = 1 ;

} else {
v = 0 ;

}

return v ;
}

A function declaration has four parts:

The return type. This specifies the type (e.g.
int or char) of the value returned by the func-
tion when it is used in an expression. If the
function does not return any value it should be
declared to be of type void.

The name of the function. This is the name used
to refer to a function when it is used in an ex-
pression.

The parameter list. This list specifies a num-
ber of local variables that are used to pass val-
ues to the function. The list is surrounded by
parentheses and the individual variable declara-
tions are separated by commas (unlike a normal
variable declaration where declarations are ter-
minated with semicolons).

The body of the function. This is a sequence
of statements surrounded by braces. Each state-
ments is terminated by a semicolon.

Exercise: Write the first 3 parts for a declaration of a function

named cdist that returns an int and takes two char arguments

called x and y.

Flow of Control3

To use a function you use its name in an expression.
When the computer executes that expression (that is,
evaluates its value) the computer transfers control to
the first statement in the function. To “call” a func-
tion is to transfer control to it – i.e. use it in an ex-
pression.

When a return statement is executed control re-
turns to back to the place where that function was
called.

Each function also contains an implicit return
statement after the last statement in the function and
so functions also return after the last statement in the
function is executed.

Function Parameters and Arguments

When a function is declared, a number of variable are
declared in parentheses immediately following the

3“Flow of control” is the sequence in which statements in a
program are executed.

6

function name. These variables are called parame-
ters (the arguments are the values used in the calling
expression). Within the function these variables are
treated like other variables. The only difference is
that when each time the function is called the values
of the parameters are initialized to the values of the
corresponding arguments in the function call.

There must be a one-to-one correspondence be-
tween the arguments used in a function call and the
parameters in the function declaration. For example,
if we declare a function with one character param-
eter, then when that function is used it must always
have one character-type argument. Similarly if we
declare a function with two int and one char pa-
rameters, then it must always be called with two int
and one char arguments.

The way a computer passes arguments to a func-
tion is to copy the values of the arguments in a spe-
cial set of memory locations called the stack. When
the function executes it removes the values from the
stack and assigns them to the parameters. Because
the values or the arguments were copied to the pa-
rameters, this means that changes to the function pa-
rameters have no effect on the values in the calling
expression.

This copying operation is called “passing by
value.”

An exception to the “passing by value” rule is the
case of arrays. To improve efficiency, array argu-
ments are not copied to the corresponding array pa-
rameter. Instead the location in memory of the array
is passed to the function. This is called “passing by
reference.” Changes to an array parameter in a func-
tion will change the corresponding array argument in
the calling function.

Return Values

When a function is declared its return type (possi-
bly void) is specified. If the function return type is
non-void a return statement must be used to return
control to the calling function. The return keyword
must be followed by an expression whose value is
the value to be returned.

Exercise: What’s wrong with the following function?

int strstr (char s1[], char s2[])
{

...
return s1 ;

}

Order of Function Declarations

The compiler must see a declaration for a function
before that function can used in an expression. This
means you must declare your functions before using
them in other functions, including the main() func-
tion.

For built-in functions the function declarations are
contained in “include” files that are included in your
program when a #include line is used in you pro-
gram. By convention, the #include lines are placed
near the start of the program before any other func-
tion declarations.

It not possible to declare one function within the
declaration of another function.

Built-in Functions

C has many pre-defined functions to do formatted
input and output, compute values of mathematical
functions, manipulate character strings, etc.

Some examples of built-in functions are the
printf() function for formatted output, getchar()
to read a character from the keyboard, or isdigit()
to test whether a character is a decimal digit.

In order to use C’s built-in functions one or
more “#include” lines must be used at the start
of a program. These lines tell the compiler to
load files (“include files”) that define particular
groups of built-in functions. For example, the
line \#include <stdio.h> lets you use the stan-
dard i/o functions in your program, while the line
#include <string.h> lets you use the standard
functions that manipulate strings.

The Turbo C on-line help can give you details on
any particular function (enter the function name in
the edit window, put the cursor on the function name
and press control-F1).

void Functions and Arguments

In some cases a function need not return a value. In
this case the function may be declared as returning

7

a type void. In other cases a function may not need
any arguments. In this case the argument declaration
may be the word void. For example, a function that
returns the next keystroke might be declared as:

char getche(void)
{

...
}

while a function that prints a character on the screen
might be declared as:

void putch(char c)
{

...
}

It is also possible to declare functions that take a
variable number of arguments. A common example
is the printf() function. We will not define these
types of functions in this course.

Other computer languages have special names
for void functions: in FORTRAN they are called
subroutines and in Pascal they are called
procedures.

Strings

Strings (sequences of characters) in C are declared
and stored as character arrays. By convention each
string in C is terminated with a null character (the
character with value zero).

The C language supports this convention by cre-
ating properly-terminated arrays when a sequence of
characters are surrounded by double quotes. Note
that there are no operators that operate on strings so
these string constants can only be used in variable
initializations and as function arguments.

There are built-in functions that can manipu-
late null-terminated strings. For example, the
strlen() function returns the length of a string,
and the strcmp() function compares two strings.
To use these functions you must include the
string.h include file in your program (using
#include <string.h>). For example:

#include <string.h>
...
char name[5] = "Jane" ;
...
n = strlen(name) ;

Exercise: Why is the string name declared as having 5 ele-

ments if it is being initialized with a 4-character value?

The functions fgets() and fputs() can be used
to read and write a string from a file or the key-
board/display.

Symbolic Constants

Most programs use constants. Examples of constants
include I/O port addresses, bit patterns (“masks”), ar-
ray lengths, string values, etc.

Putting constants directly into the statements in
a program makes it difficult to find and change the
values of these constants if the program needs to
be modified. Embedding constants directly into the
code can also be confusing because, unlike variables,
constants don’t have names that can help explain
their meaning.

The solution to these problems is to use symbols
similar to variable names to represent constants. In
C this is done by using #define lines. Each such
line defines the value of a symbol. Wherever the de-
fined symbol appears in the rest of the program the
compiler will replace the symbol with the previously
defined value.

For example, if we had the following lines in a
program:

#define IOPORT 32
#define MSG "Hello, world!\n"
#define u_char unsigned char
#define NCHR 8

then whenever the symbols IOPORT, MSG, u_char or
NCHR appeared anywhere in a subsequent line in the
program they would be replaced by corresponding
text. The substitution takes place before the line is
seen by the rest of the compiler. This allows the con-
stants to be of any type (numbers, strings or even
keywords). Thus we could have lines in the program
such as:

int x[NCHR] ;
u_char c2 ;
spoke (IOPORT, 1) ;
printf ("%s", MSG) ;

Typically the #defines are placed at the start of a
source file, immediately after the #include lines.

8

It is good practice4 to use symbolic constants for
all constants in a program. The only exceptions
should be cases where the purpose of the constant
is clear from the context. The only common excep-
tions are the values 0 (e.g. i=0) and 1 (e.g. i=i+1).
Constants with other values should almost always be
replaced by symbolic constants.

Comments and White Space

“White space” characters include spaces, tabs and
the invisible characters that mark the end of a line.
White space is optional except where necessary to
avoid ambiguity, such as between int and the vari-
able name. In places where white space is required,
you may use any type and any number of white space
characters.

Comments are notes included in the source code to
help readers understand the program. Comments are
treated as white space by the compiler. Comments
are delimited by the character pairs /* and */.

Exercise: Could the first program in this lecture be re-written

all on one line?

Indentation

Since the C compiler considers any sequence of
white space characters to be equivalent there are
many ways to format a program. However, some
formatting conventions have been established to help
convey the logical structure of the program. The
most important of these conventions is the use of in-
dentation.

The general rule is that statements embedded
within another statement (i.e. inside pairs of braces)
are indented several (3 to 8) spaces more than the in-
dentation of the immediately surrounding statement.
The placement and indentation of braces also helps
convey the meaning of the code. Using a consistent
indentation convention will greatly help you and oth-
ers understand the structure of the program.

There are several popular indentation styles. Any
one of these is acceptable if used consistently.

The style of indentation used in the examples and
solutions given in this course is the “K&R” indenta-

4You will be expected to use symbolic constants in future
assignments and labs whenever it is appropriate.

tion style. This style was first used by the designers
of the C language (Kernighan and Ritchie).

Marks will be deducted for any C program written
for a lab, assignment or exam that does not use a
consistent indentation convention.

9

